Features
* High Performance, Low Power 32-Bit Atmel® AVR® Microcontroller
— Compact Single-cycle RISC Instruction Set Including DSP Instruction Set
— Read-Modify-Write Instructions and Atomic Bit Manipulation
— Performing 1.49 DMIPS / MHz
Up to 91 DMIPS Running at 66 MHz from Flash (1 Wait-State)
Up to 49 DMIPS Running at 33MHz from Flash (0 Wait-State)
— Memory Protection Unit
* Multi-hierarchy Bus System
— High-Performance Data Transfers on Separate Buses for Increased Performance
— 15 Peripheral DMA Channels Improves Speed for Peripheral Communication
* Internal High-Speed Flash
— 512K Bytes, 256K Bytes, 128K Bytes Versions
— Single Cycle Access up to 33 MHz
— Prefetch Buffer Optimizing Instruction Execution at Maximum Speed
— 4ms Page Programming Time and 8ms Full-Chip Erase Time
— 100,000 Write Cycles, 15-year Data Retention Capability
— Flash Security Locks and User Defined Configuration Area
* Internal High-Speed SRAM, Single-Cycle Access at Full Speed
— 64K Bytes (512KB and 256KB Flash), 32K Bytes (128KB Flash)
* External Memory Interface on AT32UC3AO0 Derivatives
— SDRAM / SRAM Compatible Memory Bus (16-bit Data and 24-bit Address Buses)
* Interrupt Controller
— Autovectored Low Latency Interrupt Service with Programmable Priority
* System Functions
— Power and Clock Manager Including Internal RC Clock and One 32KHz Oscillator
— Two Multipurpose Oscillators and Two Phase-Lock-Loop (PLL) allowing
Independant CPU Frequency from USB Frequency
— Watchdog Timer, Real-Time Clock Timer
* Universal Serial Bus (USB)
— Device 2.0 Full Speed and On-The-Go (OTG) Low Speed and Full Speed
— Flexible End-Point Configuration and Management with Dedicated DMA Channels
— On-chip Transceivers Including Pull-Ups
* Ethernet MAC 10/100 Mbps interface
— 802.3 Ethernet Media Access Controller
— Supports Media Independent Interface (MIl) and Reduced MII (RMII)
* One Three-Channel 16-bit Timer/Counter (TC)
— Three External Clock Inputs, PWM, Capture and Various Counting Capabilities
* One 7-Channel 16-bit Pulse Width Modulation Controller (PWM)
* Four Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
— Independant Baudrate Generator, Support for SPI, IrDA and 1ISO7816 interfaces
— Support for Hardware Handshaking, RS485 Interfaces and Modem Line
* Two Master/Slave Serial Peripheral Interfaces (SPI) with Chip Select Signals
* One Synchronous Serial Protocol Controller
— Supports 12S and Generic Frame-Based Protocols
* One Master/Slave Two-Wire Interface (TWI), 400kbit/s I2C-compatible
* One 8-channel 10-bit Analog-To-Digital Converter
* 16-bit Stereo Audio Bitstream
— Sample Rate Up to 50 KHz

ATMEL

Y ()

32-Bit Atmel AVR
Microcontroller

AT32UC3A0512
AT32UC3A0256
AT32UC3A0128
AT32UC3A1512
AT32UC3A1256
AT32UC3A1128

32058K-AVR32-01/12



* On-Chip Debug System (JTAG interface)
— Nexus Class 2+, Runtime Control, Non-Intrusive Data and Program Trace
100-pin TQFP (69 GPIO pins), 144-pin LQFP (109 GPIO pins), 144 BGA (109 GPIO pins)
* 5V Input Tolerant 1/0s
* Single 3.3V Power Supply or Dual 1.8V-3.3V Power Supply

ATMEL z

32058K  AVR32-01/12



1. Description

32058K  AVR32-01/12

The AT32UC3A is a complete System-On-Chip microcontroller based on the AVR32 UC RISC
processor running at frequencies up to 66 MHz. AVR32 UC is a high-performance 32-bit RISC
microprocessor core, designed for cost-sensitive embedded applications, with particular empha-
sis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt con-
troller for supporting modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP instructions.

The AT32UC3A incorporates on-chip Flash and SRAM memories for secure and fast access.
For applications requiring additional memory, an external memory interface is provided on
AT32UC3AO0 derivatives.

The Peripheral Direct Memory Access controller (PDCA) enables data transfers between periph-
erals and memories without processor involvement. PDCA drastically reduces processing
overhead when transferring continuous and large data streams between modules within the
MCU.

The PowerManager improves design flexibility and security: the on-chip Brown-Out Detector
monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external
oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The Timer/Counter includes three identical 16-bit timer/counter channels. Each channel can be
independently programmed to perform frequency measurement, event counting, interval mea-
surement, pulse generation, delay timing and pulse width modulation.

The PWM modules provides seven independent channels with many configuration options
including polarity, edge alignment and waveform non overlap control. One PWM channel can
trigger ADC conversions for more accurate close loop control implementations.

The AT32UCS3A also features many communication interfaces for communication intensive
applications. In addition to standard serial interfaces like UART, SPI or TWI, other interfaces like
flexible Synchronous Serial Controller, USB and Ethernet MAC are available.

The Synchronous Serial Controller provides easy access to serial communication protocols and
audio standards like 12S.

The Full-Speed USB 2.0 Device interface supports several USB Classes at the same time
thanks to the rich End-Point configuration. The On-The-GO (OTG) Host interface allows device
like a USB Flash disk or a USB printer to be directly connected to the processor.

The media-independent interface (MIl) and reduced MIl (RMII) 10/100 Ethernet MAC module
provides on-chip solutions for network-connected devices.

AT32UC3A integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive
real-time trace, full-speed read/write memory access in addition to basic runtime control.

ATMEL ;



2. Configuration Summary

The table below lists all AT32UC3A memory and package configurations:

Ethernet

Device Flash SRAM Ext. Bus Interface | MAC Package
AT32UC3A0512 512 Kbytes 64 Kbytes | yes yes 144 pin LQFP

144 pin BGA
AT32UC3A0256 256 Kbytes 64 Kbytes | yes yes 144 pin LQFP

144 pin BGA
AT32UC3A0128 128 Kbytes 32 Kbytes | yes yes 144 pin LQFP

144 pin BGA
AT32UC3A1512 512 Kbytes 64 Kbytes no yes 100 pin TQFP
AT32UC3A1256 256 Kbytes 64 Kbytes no yes 100 pin TQFP
AT32UC3A1128 128 Kbytes 32 Kbytes no yes 100 pin TQFP

3. Abbreviations

* GCLK: Power Manager Generic Clock

* GPIO: General Purpose Input/Output

» HSB: High Speed Bus

* MPU: Memory Protection Unit

* OCD: On Chip Debug

» PB: Peripheral Bus

» PDCA: Peripheral Direct Memory Access Controller (PDC) version A
* USBB: USB On-The-GO Controller version B

ATMEL :

32058K  AVR32-01/12



4. Blockdiagram

Figure 4-1.  Blockdiagram
—— T CK———Pp | I
<«————TD0 JTAG ! uJ<L> LOCAL BUS FASTGPIO _
| INTERFACE AVR32 g | MTERFACE
—_— TMS———————» NEXUS UcC CPU @
[«——MCcKo CLASS 2+ z
¢ MDOI5..0] ocD E:CMEMORY PROTECTION umsz : 64 KB
I N INSTR DATA 2 SRAM
EVTO_N INTERFACE INTERFACE =
— vBUS >
<— D+ < USB @
<«— D- > 3 o
o INTERFACE | & ji jE jE jE i
l€—VBOF— T d
M M M S 0 O 512 KB
DMA Q:DS <R
M SK i FLASH
cot, = g
GRS, pvMa KM HIGH SPEED o
|-RXDI3..01. BUS MATRIX
RX_CLK,
RX_DV, €—DATA[15..0]—
RX_ER S <)Z:> g E —ADDR[23..0}-
MDC, S S M <O | NCS[3.0—p
TXD[3..0], ETHNI?ESIET @ o Z - NRD—— |
8 (1:'.);1(:;;\:(1‘7 CONFIGURATlOiE REGISTERS BUS ji uEJ 3 ﬁ ':X,VVAEE >
E TX_ER, N 5 = -l NWE1—»
w | spEED PB HsB PERIPHERAL 32 NWES
S e o> HSE-PB HSB-PB AN 2L & e
['4 BRIDGE B BRIDGE A CONTROLLER 2‘ e % CAS—p|
2 PB é @) SDA10—P|
& iy SDCK—|
é < ; 9) ——SDCKE—»|
L INTERRUPT a R SDCS0—|
SDWE— )|
Z CONTROLLER K= DWE
O «— RXD———
PA P TXD—— P
2 USART1 <« CLK——p &
452 EXTINT[7..0— EXTERNAL <:::> g €« RrTs.cTs——p| 2 PA
PX l€«——KPS[7..0} INTERRUPT <yl::> «—DSR, DTR, DCD, R—»| 1 422
IRV N CONTROLLER o o
USARTO « "o &
3 USART2 2
o
REAL TIME = =8 USARTS3 D e —
COUNTER %
Q SERIAL <7M|S(S)C;OS|4> é
WATCHDOG = <=8 n\TTEERAiiEEAoIH <« NPCSO—— 3
TIMER NPCS[3..1}——)
[«€TX_CLOCK, TX_FRAME_SYNC)»
SYNCHRONOUS
115 kHz k) POWER <)::>8 SERIAL TX_DATA——— P
RCOSC MANAGER o CONTROLLER €RX_CLOCK, RX_FRAME_SYNC)»
—xIN32»| 32 KHz — <€————RX_DATA
[@XOUT32-  OSC CLOCK
GENERATOR 0 TWO-WIRE €« SCL———>
XN gsco k= 8 INTERFACE «— spA———_ 3
<€XOUTO0—] CLOCK
F—XIN1—| CONTROLLER
OScC1 <#>
«xoUTI—| = PULSE WIDTH
PLLO K= SLEEP <—>8| MoDULATION PWME.0— >
CONTROLLER *|  CONTROLLER
PLL1
| PLL k= RESET
le——Ap[7..0}
RESET_N |€———GCLK[3..0] CONTROLLER § AND/TE(IDTC,;AJO ovRer
CONVERTER
€C——A[2.0——
<82 0> TIMER/ICOUNTER ()
CLK[2..0— | o AUDIO DATA[1..0——
<)::> g BITSDTARCEAM DATAN[1.0}——

32058K  AVR32-01/12

ATmEL



4.1 Processor and architecture
4.1.1 AVR32 UC CPU

* 32-bit load/store AVR32A RISC architecture.
15 general-purpose 32-bit registers.
32-bit Stack Pointer, Program Counter and Link Register reside in register file.
Fully orthogonal instruction set.
Privileged and unprivileged modes enabling efficient and secure Operating Systems.
— Innovative instruction set together with variable instruction length ensuring industry leading
code density.
— DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
» 3 stage pipeline allows one instruction per clock cycle for most instructions.
— Byte, half-word, word and double word memory access.
— Multiple interrupt priority levels.
* MPU allows for operating systems with memory protection.

41.2 Debug and Test system

* |[EEE1149.1 compliant JTAG and boundary scan

* Direct memory access and programming capabilities through JTAG interface

* Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 2+
— Low-cost NanoTrace supported.

* Auxiliary port for high-speed trace information

* Hardware support for 6 Program and 2 data breakpoints

* Unlimited number of software breakpoints supported

» Advanced Program, Data, Ownership, and Watchpoint trace supported

4.1.3 Peripheral DMA Controller

* Transfers from/to peripheral to/from any memory space without intervention of the processor.
* Next Pointer Support, forbids strong real-time constraints on buffer management.
* Fifteen channels

— Two for each USART

— Two for each Serial Synchronous Controller

— Two for each Serial Peripheral Interface

— One for each ADC

— Two for each TWI Interface

4.1.4 Bus system

* High Speed Bus (HSB) matrix with 6 Masters and 6 Slaves handled

— Handles Requests from the CPU Data Fetch, CPU Instruction Fetch, PDCA, USBB, Ethernet
Controller, CPU SAB, and to internal Flash, internal SRAM, Peripheral Bus A, Peripheral Bus
B, EBI.

— Round-Robin Arbitration (three modes supported: no default master, last accessed default
master, fixed default master)

— Burst Breaking with Slot Cycle Limit

— One Address Decoder Provided per Master

ATMEL ;

32058K  AVR32-01/12



32058K  AVR32-01/12

* Peripheral Bus A able to run on at divided bus speeds compared to the High Speed Bus

Figure 4-1 gives an overview of the bus system. All modules connected to the same bus use the
same clock, but the clock to each module can be individually shut off by the Power Manager.
The figure identifies the number of master and slave interfaces of each module connected to the
High Speed Bus, and which DMA controller is connected to which peripheral.

ATMEL 7



5. Signals Description

The following table gives details on the signal name classified by peripheral

The signals are multiplexed with GPIO pins as described in "Peripheral Multiplexing on 1/O lines”
on page 45.

Table 5-1. Signal Description List

Active
Signal Name Function Type Level Comments
Power
VDDPLL Power supply for PLL 'Tr?;‘ﬁr 1.65V to 1.95 V
P
VDDCORE Core Power Supply l;’;ﬁr 1.65V to 1.95 V
VDDIO /O Power Supply 'Tr?;"ir 3.0V to 3.6V
VDDANA Analog Power Supply 'Tr?;"lir 3.0V to 3.6V
VDDIN Voltage Regulator Input Supply Fl’rcl);vuetr 3.0V to 3.6V
Power

VDDOUT Voltage Regulator Output Output 1.65V1t01.95V
GNDANA Analog Ground Ground
GND Ground Ground

Clocks, Oscillators, and PLL's
XINO, XIN1, XIN32 Crystal 0, 1, 32 Input Analog
XOUTO0, XOUT1,
XOUT32 Crystal 0, 1, 32 Output Analog

JTAG
TCK Test Clock Input
TDI Test Data In Input
TDO Test Data Out Output
TMS Test Mode Select Input
Auxiliary Port - AUX

MCKO Trace Data Output Clock Output
MDOO - MDO5 Trace Data Output Output

ATMEL :

32058K  AVR32-01/12



Table 5-1. Signal Description List
Active
Signal Name Function Type Level Comments
MSEQOOQ - MSEO1 Trace Frame Control Output
EVTI_N Event In Output Low
EVTO_N Event Out Output Low
Power Manager - PM
GCLKO - GCLK3 Generic Clock Pins Output
RESET_N Reset Pin Input Low
Real Time Counter - RTC
RTC_CLOCK RTC clock Output
Watchdog Timer - WDT
WDTEXT External Watchdog Pin Output
External Interrupt Controller - EIC
EXTINTO - EXTINT7 External Interrupt Pins Input
KPS0 - KPS7 Keypad Scan Pins Output
NMI_N Non-Maskable Interrupt Pin Input Low
Ethernet MAC - MACB
COL Collision Detect Input
CRS Carrier Sense and Data Valid Input
MDC Management Data Clock Output
MDIO Management Data Input/Output 1/0
RXDO - RXD3 Receive Data Input
RX_CLK Receive Clock Input
RX_DV Receive Data Valid Input
RX_ER Receive Coding Error Input
SPEED Speed
TXDO - TXD3 Transmit Data Output
TX CLK Transmit Clock or Reference Clock Output
TX_EN Transmit Enable Output
TX ER Transmit Coding Error Output

32058K  AVR32-01/12

ATMEL




Table 5-1. Signal Description List

Active

Signal Name Function Type Level Comments

External Bus Interface - HEBI
ADDRO - ADDR23 Address Bus Output
CAS Column Signal Output Low
DATAO - DATA15 Data Bus I/0
NCSO0 - NCS3 Chip Select Output Low
NRD Read Signal Output Low
NWAIT External Wait Signal Input Low
NWEO Write Enable 0 Output Low
NWE1 Write Enable 1 Output Low
NWE3 Write Enable 3 Output Low
RAS Row Signal Output Low
SDA10 SDRAM Address 10 Line Output
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output
SDCSO0 SDRAM Chip Select Output Low
SDWE SDRAM Write Enable Output Low

General Purpose Input/Output 2 - GPIOA, GPIOB, GPIOC

PO - P31 Parallel 1/0O Controller GPIOA /0
PO - P31 Parallel I/0 Controller GPIOB I/0
PO - P5 Parallel 1/0 Controller GPIOC /0
PO - P31 Parallel I/O Controller GPIOX I/0

Serial Peripheral Interface - SPI0, SPI1

MISO Master In Slave Out I/0

MOSI Master Out Slave In 110

NPCSO0 - NPCS3 SPI Peripheral Chip Select 110 Low
SCK Clock Output

Synchronous Serial Controller - SSC

RX_CLOCK SSC Receive Clock I/0

ATMEL X

32058K  AVR32-01/12



Table 5-1. Signal Description List
Active
Signal Name Function Type Level Comments
RX_DATA SSC Receive Data Input
RX_FRAME_SYNC SSC Receive Frame Sync I/0
TX_CLOCK SSC Transmit Clock I/0
TX_DATA SSC Transmit Data Output
TX_FRAME_SYNC SSC Transmit Frame Sync I/0
Timer/Counter - TIMER
A0 Channel O Line A I/0
A1 Channel 1 Line A /0
A2 Channel 2 Line A I/0
BO Channel 0 Line B /0
B1 Channel 1 Line B I/0
B2 Channel 2 Line B I/0
CLKO Channel 0 External Clock Input Input
CLK1 Channel 1 External Clock Input Input
CLK2 Channel 2 External Clock Input Input
Two-wire Interface - TWI
SCL Serial Clock I/0
SDA Serial Data /0
Universal Synchronous Asynchronous Receiver Transmitter - USARTO0, USART1, USART2, USART3
CLK Clock I/0
CTS Clear To Send Input
DCD Data Carrier Detect Only USART1
DSR Data Set Ready Only USART1
DTR Data Terminal Ready Only USART1
RI Ring Indicator Only USART1
RTS Request To Send Output
RXD Receive Data Input
TXD Transmit Data Output

32058K  AVR32-01/12

ATMEL

11



Table 5-1. Signal Description List
Active
Signal Name Function Type Level Comments
Analog to Digital Converter - ADC
ADO - AD7 Analog input pins Analog
input
ADVREF Analog positive reference voltage input Ai:?)luotg 2.6 to 3.6V
Pulse Width Modulator - PWM
PWMO - PWM6 PWM Output Pins Output
Universal Serial Bus Device - USB
DDM USB Device Port Data - Analog
DDP USB Device Port Data + Analog
VBUS USB VBUS Monitor and OTG Negociation Al’r‘]z'uotg
USBID ID Pin of the USB Bus Input
USB_VBOF USB VBUS On/off: bus power control port output
Audio Bitstream DAC (ABDAC)
DATAOQ-DATA1 D/A Data out Outpu
DATANO-DATAN1 D/A Data inverted out Outpu

32058K  AVR32-01/12

ATMEL

12




6. Power Considerations

6.1 Power Supplies

The AT32UC3A has several types of power supply pins:

* VDDIO: Powers I/O lines. Voltage is 3.3V nominal.

* VDDANA: Powers the ADC Voltage is 3.3V nominal.
* VDDIN: Input voltage for the voltage regulator. Voltage is 3.3V nominal.

* VDDCORE: Powers the core, memories, and peripherals. Voltage is 1.8V nominal.
* VDDPLL: Powers the PLL. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE, VDDIO, VDDPLL. The ground pin for

VDDANA is GNDANA.

Refer to "Power Consumption” on page 767 for power consumption on the various supply pins.

Single Power Supply

33v m—— »5 VDDANA
—X] vbbIO

—X] ADVREF

L———]] voDIN  —x
1.8V
Regulator

—X] vbbouT «———

% VDDCORE

——DX] vboPLL

ATMEL

32058K  AVR32-01/12

3.3V

1.8V

Dual Power Supply

-

—[X] vDDANA
—[X] vbDIO

L »D<|ADVREF

. 4
VDDIN
1.8V
Regulator

VDDOUT ——

,Z| VDDCORE

L[] vbDPLL

13



6.2 Voltage Regulator
6.2.1 Single Power Supply

The AT32UC3A embeds a voltage regulator that converts from 3.3V to 1.8V. The regulator takes
its input voltage from VDDIN, and supplies the output voltage on VDDOUT. VDDOUT should be
externally connected to the 1.8V domains.

Adequate input supply decoupling is mandatory for VDDIN in order to improve startup stability
and reduce source voltage drop. Two input decoupling capacitors must be placed close to the
chip.

Adequate output supply decoupling is mandatory for VDDOUT to reduce ripple and avoid oscil-
lations. The best way to achieve this is to use two capacitors in parallel between VDDOUT and
GND as close to the chip as possible

33V = »[X] vDDIN
i Regulator}
1.8V = &VDDOUT <ﬁ-u“uu
Courz f f Court

Refer to Section 38.3 on page 765 for decoupling capacitors values and regulator characteristics

6.2.2 Dual Power Supply

In case of dual power supply, VDDIN and VDDOUT should be connected to ground to prevent
from leakage current.

VDDIN

VDDOUT

ATMEL 1

32058K  AVR32-01/12



6.3 Analog-to-Digital Converter (A.D.C) reference.

32058K  AVR32-01/12

The ADC reference (ADVREF) must be provided from an external source. Two decoupling
capacitors must be used to insure proper decoupling.

3.3V m ADVREF

I CVREFZ—TmlzCVREFl

Refer to Section 38.4 on page 765 for decoupling capacitors values and electrical
characteristics.

In case ADC is not used, the ADVREF pin should be connected to GND to avoid extra
consumption.

ATMEL i



7. Package and Pinout
The device pins are multiplexed with peripheral functions as described in "Peripheral Multiplexing on I/O lines” on page 45.

Figure 7-1. TQFP100 Pinout

75 51
I I
76 = = 50
100 = » = 26
I I
1 25
Table 7-1. TQFP100 Package Pinout

1 PB20 26 PAO5 51 PA21 76 PB08
2 PB21 27 PAO6 52 PA22 77 PB09
3 PB22 28 PAO7 53 PA23 78 PB10
4 VDDIO 29 PAO8 54 PA24 79 VDDIO
5 GND 30 PAO9 55 PA25 80 GND
6 PB23 31 PA10 56 PA26 81 PB11
7 PB24 32 N/C 57 PA27 82 PB12
8 PB25 33 PA11 58 PA28 83 PA29
9 PB26 34 VDDCORE 59 VDDANA 84 PA30
10 PB27 35 GND 60 ADVREF 85 PC02
11 VDDOUT 36 PA12 61 GNDANA 86 PCO03
12 VDDIN 37 PA13 62 VDDPLL 87 PB13
13 GND 38 VDDCORE 63 PCO00 88 PB14
14 PB28 39 PA14 64 PCO1 89 T™S
15 PB29 40 PA15 65 PB00 90 TCK
16 PB30 41 PA16 66 PBO1 91 TDO
17 PB31 42 PA17 67 VDDIO 92 DI
18 RESET_N 43 PA18 68 VDDIO 93 PCO04
19 PAOO 44 PA19 69 GND 94 PCO5
20 PAO1 45 PA20 70 PB02 95 PB15
21 GND 46 VBUS 71 PBO3 96 PB16
22 VDDCORE 47 VDDIO 72 PB04 97 VDDCORE

ATMEL i

32058K  AVR32-01/12



Table 7-1. TQFP100 Package Pinout
23 PAO2 48 DM 73 PBO5 98 PB17
24 PAO3 49 DP 74 PB06 99 PB18
25 PAO4 50 GND 75 PBO7 100 PB19
Figure 7-2. LQFP144 Pinout
108 73
I I
109 = = 72
144 = « = 37
I I
1 36
Table 7-2. VQFP144 Package Pinout
1 PX00 37 GND 73 PA21 109 GND
2 PX01 38 PX10 74 PA22 110 PX30
3 PB20 39 PAO5 75 PA23 111 PB08
4 PX02 40 PX11 76 PA24 112 PX31
5 PB21 41 PAO6 77 PA25 113 PB09
6 PB22 42 PX12 78 PA26 114 PX32
7 VDDIO 43 PAO7 79 PA27 115 PB10
8 GND 44 PX13 80 PA28 116 VDDIO
9 PB23 45 PAO8 81 VDDANA 117 GND
10 PX03 46 PX14 82 ADVREF 118 PX33
11 PB24 47 PAO9 83 GNDANA 119 PB11
12 PX04 48 PA10 84 VDDPLL 120 PX34
13 PB25 49 N/C 85 PCO00 121 PB12
14 PB26 50 PA11 86 PCO1 122 PA29
15 PB27 51 VDDCORE 87 PX20 123 PA30
16 VDDOUT 52 GND 88 PB00 124 PC02
17 VDDIN 53 PA12 89 PX21 125 PC03
18 GND 54 PA13 90 PBO1 126 PB13
19 PB28 55 VDDCORE 91 PX22 127 PB14
20 PB29 56 PA14 92 VDDIO 128 T™S
21 PB30 57 PA15 93 VDDIO 129 TCK

ATMEL i

32058K  AVR32-01/12



Table 7-2. VQFP144 Package Pinout

22 PB31 58 PA16 94 GND 130 TDO
23 RESET_N 59 PX15 95 PX23 131 TDI
24 PX05 60 PA17 96 PB02 132 PC04
25 PAOO 61 PX16 97 PX24 133 PC05
26 PX06 62 PA18 98 PBO03 134 PB15
27 PAO1 63 PX17 99 PX25 135 PX35
28 GND 64 PA19 100 PB04 136 PB16
29 VDDCORE 65 PX18 101 PX26 137 PX36
30 PA02 66 PA20 102 PB05 138 VDDCORE
31 PX07 67 PX19 103 PX27 139 PB17
32 PAO3 68 VBUS 104 PB06 140 PX37
33 PX08 69 VDDIO 105 PX28 141 PB18
34 PAO4 70 DM 106 PBO7 142 PX38
35 PX09 71 DP 107 PX29 143 PB19
36 VDDIO 72 GND 108 VDDIO 144 PX39

Figure 7-3.  BGA144 Pinout

PIN A1 CORNER

\123456?891{}1112

O

= r & o I @a|lmm 9o O m F

ATMEL i

32058K  AVR32-01/12



Table 7-3. BGA144 Package Pinout A1..M8
1 2 3 4 5 6 7 8

A | VDDIO PB07 PB05 PB02 PB03 PB01 PCO00 PA28
B | PB08 GND PB06 PB04 VDDIO PB00 PCO1 VDDPLL
C | PB09 PX33 PA29 PC02 PX28 PX26 PX22 PX21
D | PB11 PB13 PB12 PX30 PX29 PX25 PX24 PX20
E | PB10 VDDIO PX32 PX31 VDDIO PX27 PX23 VDDANA
F | PA30 PB14 PX34 PB16 TCK GND GND PX16
G | T™MS PCO03 PX36 PX35 PX37 GND GND PA16
H | TDO VDDCORE PX38 PX39 VDDIO PAO1 PA10 VDDCORE
J | TDI PB17 PB15 PX00 PX01 PAOO PAO3 PAO4
K | PCO5 PCO04 PB19 PB20 PX02 PB29 PB30 PAO2
L | PB21 GND PB18 PB24 VDDOUT PX04 PB31 VDDIN
M | PB22 PB23 PB25 PB26 PX03 PB27 PB28 RESET_N

Table 7-4. BGA144 Package Pinout A9..M12

9 10 11 12

A | PA26 PA25 PA24 PA23

B | PA27 PA21 GND PA22

C | ADVREF GNDANA PX19 PA19

D | PA18 PA20 DP DM

E | PX18 PX17 VDDIO VBUS

F | PA17 PX15 PA15 PA14

G | PA13 PA12 PA11 NC

H | PX11 PA08 VDDCORE VDDCORE

J | PX14 PAO7 PX13 PA0O9

K | PX08 GND PAO5 PX12

L | PX06 PX10 GND PA06

M | PX05 PX07 PX09 VDDIO

Note:  NC is not connected.

32058K  AVR32-01/12

ATMEL

19




8. 1/0 Line Considerations

8.1 JTAG pins

8.2 RESET_N pin

8.3 TWIpins

8.4 GPIO pins

32058K  AVR32-01/12

TMS, TDI and TCK have pull-up resistors. TDO is an output, driven at up to VDDIO, and has no
pull-up resistor.

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As
the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case
no reset from the system needs to be applied to the product.

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and
inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the
pins have the same characteristics as PIO pins.

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is
performed independently for each 1/O line through the GPIO Controllers. After reset, I/O lines
default as inputs with pull-up resistors disabled, except when indicated otherwise in the column
“Reset State” of the GPIO Controller multiplexing tables.

ATMEL 2



9. Processor and Architecture

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the
AVR32 architecture. A summary of the programming model, instruction set and MPU is pre-
sented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical
Reference Manual.

9.1 AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for cost-
sensitive embedded applications, with particular emphasis on low power consumption and high
code density. In addition, the instruction set architecture has been tuned to allow a variety of
microarchitectures, enabling the AVR32 to be implemented as low-, mid- or high-performance
processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been com-
piled and analyzed to achieve the best code density in its class. In addition to lowering the
memory requirements, a compact code size also contributes to the core’s low power characteris-
tics. The processor supports byte and half-word data types without penalty in code size and
performance.

Memory load and store operations are provided for byte, half-word, word and double word data
with automatic sign- or zero extension of half-word and byte data. The C-compiler is closely
linked to the architecture and is able to exploit code optimization features, both for size and
speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes.
As an example, instructions with immediates often have a compact format with a smaller imme-
diate, and an extended format with a larger immediate. In this way, the compiler is able to use
the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a com-
pact format with two operands as well as an extended format with three operands. The larger
format increases performance, allowing an addition and a data move in the same instruction in a
single cycle. Load and store instructions have several different formats in order to reduce code
size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

9.2 The AVR32UC CPU

The AVR32 UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32 UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency and guarantees deterministic timing. Also,
power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

ATMEL 2

32058K  AVR32-01/12



9.2.1

32058K  AVR32-01/12

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the device-specific
“Peripherals” chapter of this data sheet.

Figure 9-1 on page 22 displays the contents of AVR32UC.

Figure 9-1.  Overview of the AVR32UC CPU
N

interface )
Reset interface )

OCD i

Power/
Reset
control

OoCD
system

Interrupt controller interface

AVR32UC CPU pipeline

| MPU

Instruction memory controller Data memory controller

High
Speed
Bus
master

High CPU Local
Speed Bus
Bus slave master

High Speed Bus master

Data RAM interface

High Speed Bus
High Speed Bus
High Speed Bus
CPU Local Bus

{

Pipeline Overview

AVR32 UC is a pipelined processor with three pipeline stages. There are three pipeline stages,
Instruction Fetch (IF), Instruction Decode (ID) and Instruction Execute (EX). The EX stage is
split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) sec-
tion and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to
complete, and in this case, the instruction resides in the ID and EX stages for the required num-
ber of clock cycles. Since there is only three pipeline stages, no internal data forwarding is
required, and no data dependencies can arise in the pipeline.

Figure 9-2 on page 23 shows an overview of the AVR32 UC pipeline stages.

ATMEL 2



Figure 9-2. The AVR32UC Pipeline

- MUL > Multiply unit
F D Regfile > ALU p| Redfile ALU unit
Read w rite
Prefetch unit | Decode unit |—
Y
Le| s > Load-s.tore
unit

9.2.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications like smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

9.2.3 Java Support
AVR32UC does not provide Java hardware acceleration.

9.2.4 Memory protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

9.2.5 Unaligned reference handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and Id.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

ATMEL 2

32058K  AVR32-01/12



The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

Table 9-1. Instructions with unaligned reference support
Instruction Supported alignment
ld.d Word
st.d Word
9.2.6 Unimplemented instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

* All SIMD instructions

* All coprocessor instructions

* retj, incjosp, popjc, pushjc

« tlbr, tlbs, tlbw

» cache

9.2.7 CPU and Architecture revision

Two major revisions of the AVR32UC CPU currently exist. The device described in this
datasheet uses CPU revision 2.

The Architecture Revision field in the CONFIGO system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 2 is fully backward-compatible with revision 1, ie. code compiled for
revision 1 is binary-compatible with revision 2 CPUs.

ATMEL 2

32058K  AVR32-01/12



9.3 Programming Model

9.3.1 Register file configuration
The AVR32UC register file is shown below.

Figure 9-3. The AVR32UC Register File

Application Supervisor INTO INT1 INT2 INT3 Exception NMI
Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0 Bit 31 Bit 0
[ PC PC PC | PC PC [ PC PC PC |
( LR LR LR LR LR LR LR LR
SP_APP SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS SP_SYS
R12 R12 R12 R12 R12 R12 R12 R12
R11 R11 R11 R11 R11 R11 R11 R11
R10 R10 R10 R10 R10 R10 R10 R10
R9 R9 R9 R9 R9 RO RO RO
R8 R8 R8 R8 R8 R8 R8 R8
R7 R7 R7 R7 R7 R7 R7 R7
R6 R6 R6 R6 R6 R6 R6 R6
RS RS RS RS RS RS RS RS
R4 R4 R4 R4 R4 R4 R4 R4
R3 R3 R3 R3 R3 R3 R3 R3
R2 R2 R2 R2 R2 R2 R2 R2
Rl Rl Rl Rl Rl Rl Rl Rl
RO RO RO RO RO RO RO RO
SR || SR || SR || SR || SR | SR || SR || SR
9.3.2 Status register configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 9-4 on
page 25 and Figure 9-5 on page 26. The lower word contains the C, Z, N, V and Q condition
code flags and the R, T and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 9-4. The Status Register High Halfword

Bit 31 Bit 16

- - - - DM D - M2 | M1 | MO | EM |I3M |I2M | MM | IOM | GM |Bit name

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 |Initial value

T L» Global Interrupt Mask

——— Interrupt Level 0 Mask
t———————— Interrupt Level 1 Mask
L———» Interrupt Level 2 Mask
» Interrupt Level 3 Mask
» Exception Mask

» Mode Bit 0

» Mode Bit 1

» Mode Bit 2

» Reserved

» Debug State

» Debug State Mask

» Reserved

ATMEL 2

32058K  AVR32-01/12



AT32UC3A

Figure 9-5. The Status Register Low Halfword

Bit 15 Bit 0

RI| T - - - - - - - - L|Q|V/|N]| Z | C |Bitname

0 0 0 0|0 0 0 0 0|0 0 0 0|0 0 0 |Initialvalue

T L» Carry

L——» Zero
L= Sign
L——» Overflow
» Saturation
» Lock
» Reserved
» Scratch
» Register Remap Enable

9.3.3 Processor States
9.3.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 9-2 on
page 26.
Table 9-2. Overview of execution modes, their priorities and privilege levels.
Priority Mode Security Description
1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode
2 Exception Privileged Execute exceptions
3 Interrupt 3 Privileged General purpose interrupt mode
4 Interrupt 2 Privileged General purpose interrupt mode
5 Interrupt 1 Privileged General purpose interrupt mode
6 Interrupt O Privileged General purpose interrupt mode
N/A Supervisor Privileged Runs supervisor calls
N/A Application Unprivileged Normal program execution mode

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

9.3.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

ATMEL 2

32058K  AVR32-01/12



All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

9.3.4 System registers

32058K  AVR32-01/12

The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 9-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address
2 8 ACBA Application Call Base Address
3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INTO Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug Mode
13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INTO Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug Mode
21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LVO Unused in AVR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

ATMEL 2



Table 9-3. System Registers (Continued)

Reg # Address Name Function

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVR32UC

28 112 JAVA_LV5 Unused in AVR32UC

29 116 JAVA_LV6 Unused in AVR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIGO Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNTO Unused in AVR32UC

77 308 PCNT1 Unused in AVR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUARO MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUAR3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUAR5 MPU Address Register region 5

86 344 MPUARG6 MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSRO MPU Privilege Select Register region 0
89 356 MPUPSR1 MPU Privilege Select Register region 1
90 360 MPUPSR2 MPU Privilege Select Register region 2
91 364 MPUPSR3 MPU Privilege Select Register region 3

ATMEL 2

32058K  AVR32-01/12



Table 9-3. System Registers (Continued)

Reg # Address Name Function

92 368 MPUPSR4 MPU Privilege Select Register region 4
93 372 MPUPSR5 MPU Privilege Select Register region 5
94 376 MPUPSRG6 MPU Privilege Select Register region 6
95 380 MPUPSR7 MPU Privilege Select Register region 7
96 384 MPUCRA Unused in this version of AVR32UC

97 388 MPUCRB Unused in this version of AVR32UC

98 392 MPUBRA Unused in this version of AVR32UC

99 396 MPUBRB Unused in this version of AVR32UC
100 400 MPUAPRA MPU Access Permission Register A
101 404 MPUAPRB MPU Access Permission Register B
102 408 MPUCR MPU Control Register

103-191 412-764 Reserved Reserved for future use

192-255 768-1020 IMPL IMPLEMENTATION DEFINED

9.4 Exceptions and Interrupts

AVR32UC incorporates a powerful exception handling scheme. The different exception sources,
like lllegal Op-code and external interrupt requests, have different priority levels, ensuring a well-
defined behavior when multiple exceptions are received simultaneously. Additionally, pending
exceptions of a higher priority class may preempt handling of ongoing exceptions of a lower pri-
ority class.

When an event occurs, the execution of the instruction stream is halted, and execution control is
passed to an event handler at an address specified in Table 9-4 on page 32. Most of the han-
dlers are placed sequentially in the code space starting at the address specified by EVBA, with
four bytes between each handler. This gives ample space for a jump instruction to be placed
there, jumping to the event routine itself. A few critical handlers have larger spacing between
them, allowing the entire event routine to be placed directly at the address specified by the
EVBA-relative offset generated by hardware. All external interrupt sources have autovectored
interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify
the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giv-
ing an offset of maximum 16384 bytes. The target address of the event handler is calculated as
(EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception
code segments must be set up appropriately. The same mechanisms are used to service all dif-
ferent types of events, including external interrupt requests, yielding a uniform event handling
scheme.

An interrupt controller does the priority handling of the external interrupts and provides the
autovector offset to the CPU.

9.4.1 System stack issues
Event handling in AVR32 UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.

ATMEL 2

32058K  AVR32-01/12



The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

9.4.2 Exceptions and interrupt requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I13M, 12M, 1M, I0M, EM and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit and Bus
Error) can not be masked. When an event is accepted, hardware automatically sets the
mask bits corresponding to all sources with equal or lower priority. This inhibits accep-
tance of other events of the same or lower priority, except for the critical events listed
above. Software may choose to clear some or all of these bits after saving the neces-
sary state if other priority schemes are desired. It is the event source’s responsability to
ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the eventis an INTO, INT1, INT2 or INT3, regis-
ters R8-R12 and LR are also automatically stored to stack. Storing the Status Register
ensures that the core is returned to the previous execution mode when the current
event handling is completed. When exceptions occur, both the EM and GM bits are set,
and the application may manually enable nested exceptions if desired by clearing the
appropriate bit. Each exception handler has a dedicated handler address, and this
address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown inTable 9-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INTO, INT1, INT2 or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

9.4.3 Supervisor calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

9.4.4 Debug requests
The AVR32 architecture defines a dedicated debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

ATMEL L

32058K  AVR32-01/12



status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

9.4.5 Entry points for events

32058K  AVR32-01/12

Several different event handler entry points exists. In AVR32 UC, the reset address is
0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 9-4. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 9-4. Some of the excep-
tions are unused in AVR32 UC since it has no MMU, coprocessor interface or floating-point unit.

ATMEL o



Table 9-4. Priority and handler addresses for events
Priority | Handler Address Name Event source Stored Return Address
1 0x8000_0000 Reset External input Undefined
2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction
3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction
4 EVBA+0x04 TLB multiple hit MPU
5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction
6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction
7 EVBA+0x10 NMI External input First non-completed instruction
8 Autovectored Interrupt 3 request External input First non-completed instruction
9 Autovectored Interrupt 2 request External input First non-completed instruction
10 Autovectored Interrupt 1 request External input First non-completed instruction
11 Autovectored Interrupt 0 request External input First non-completed instruction
12 EVBA+0x14 Instruction Address CPU PC of offending instruction
13 EVBA+0x50 ITLB Miss MPU
14 EVBA+0x18 ITLB Protection MPU PC of offending instruction
15 EVBA+0x1C Breakpoint OCD system First non-completed instruction
16 EVBA+0x20 lllegal Opcode Instruction PC of offending instruction
17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction
18 EVBA+0x28 Privilege violation Instruction PC of offending instruction
19 EVBA+0x2C Floating-point UNUSED
20 EVBA+0x30 Coprocessor absent UNUSED
21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2
22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction
23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction
24 EVBA+0x60 DTLB Miss (Read) MPU
25 EVBA+0x70 DTLB Miss (Write) MPU
26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction
27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction
28 EVBA+0x44 DTLB Modified UNUSED

32058K  AVR32-01/12

ATMEL

32




10. Memories

10.1 Embedded Memories

* Internal High-Speed Flash
— 512 KBytes (AT32UC3A0512, AT32UC3A1512)
— 256 KBytes (AT32UC3A0256, AT32UC3A1256)
— 128 KBytes (AT32UC3A1128, AT32UC3A2128)
- 0 Wait State Access at up to 33 MHz in Worst Case Conditions
- 1 Wait State Access at up to 66 MHz in Worst Case Conditions
- Pipelined Flash Architecture, allowing burst reads from sequential Flash locations, hiding
penalty of 1 wait state access
- Pipelined Flash Architecture typically reduces the cycle penalty of 1 wait state operation
to only 15% compared to 0 wait state operation
- 100 000 Write Cycles, 15-year Data Retention Capability
-4 ms Page Programming Time, 8 ms Chip Erase Time
- Sector Lock Capabilities, Bootloader Protection, Security Bit
- 32 Fuses, Erased During Chip Erase
- User Page For Data To Be Preserved During Chip Erase
* Internal High-Speed SRAM, Single-cycle access at full speed
— 64 KBytes (AT32UC3A0512, AT32UC3A0256, AT32UC3A1512, AT32UC3A1256)
— 32KBytes (AT32UC3A1128)

10.2 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they
are never remapped in any way, not even in boot. Note that AVR32 UC CPU uses unsegmented
translation, as described in the AVR32 Architecture Manual. The 32-bit physical address space
is mapped as follows:

Table 10-1. AT32UC3A Physical Memory Map

Device Start Address Size

AT32UC3A0512 | AT32UC3A1512 | AT32UC3A0256 | AT32UC3A1256 | AT32UC3A0128 | AT32UC3A1128
Embedded SRAM | 0x0000_0000 | 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 32 Kbyte 32 Kbyte
Embedded Flash | 0x8000_0000 | 512 Kbyte 512 Kbyte 256 Kbyte 256 Kbyte 128 Kbyte 128 Kbyte
EBI SRAM CS0 0xC000_0000 | 16 Mbyte - 16 Mbyte - 16 Mbyte -
EBI SRAM CS2 0xC800_0000 | 16 Mbyte - 16 Mbyte - 16 Mbyte -
EBI SRAM CS3 0xCC00_0000 | 16 Mbyte - 16 Mbyte - 16 Mbyte -
/ESBDIRS EI\//T '\égos L 0xD000_0000 | 128 Mbyte - 128 Mbyte - 128 Mbyte -
USB. . 0xE000_0000 | 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte
Configuration
HSB-PB Bridge A | OXFFFE_0000 | 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte 64 Kbyte
HSB-PB Bridge B | OxFFFF_0000 | 64 Kbyte 64 Kbyte 64 kByte 64 kByte 64 Kbyte 64 Kbyte

32058K  AVR32-01/12

ATMEL s



Table 10-2.  Flash Memory Parameters

General Purpose
Flash Size Number of pages Page size Fuse bits
Part Number (FLASH_PW) (FLASH_P) (FLASH_W) (FLASH_F)

AT32UC3A0512 512 Kbytes 1024 128 words 32 fuses
AT32UC3A1512 512 Kbytes 1024 128 words 32 fuses
AT32UC3A0256 256 Kbytes 512 128 words 32 fuses
AT32UC3A1256 256 Kbytes 512 128 words 32 fuses
AT32UC3A1128 128 Kbytes 256 128 words 32 fuses
AT32UC3A0128 128 Kbytes 256 128 words 32 fuses

10.3 Bus Matrix Connections

32058K  AVR32-01/12

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own
decoder, thus allowing a different memory mapping per master. The master number in the table
below can be used to index the HMATRIX control registers. For example, MCFGO is associated
with the CPU Data master interface.

Table 10-3.  High Speed Bus masters

Master 0 CPU Data
Master 1 CPU Instruction
Master 2 CPU SAB
Master 3 PDCA

Master 4 MACB DMA
Master 5 USBB DMA

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number
in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is
associated with the Internal SRAM Slave Interface.

Table 10-4. High Speed Bus slaves

Slave 0 Internal Flash
Slave 1 HSB-PB Bridge 0
Slave 2 HSB-PB Bridge 1
Slave 3 Internal SRAM
Slave 4 USBB DPRAM
Slave 5 EBI

ATMEL o



Figure 10-1. HMatrix Master / Slave Connections

HMATRIX SLAVES
< = o
E m o m ~— é =
= o | 3o | &2 o @
E | B2 | 88 | Ea | B w
o Io I 5 1]
£ E >
0 1 2 3 4 5
CPUData | 0 >
CPU 1
Instruction
2]
i
‘Z’ CPU SAB 2 @ @ O >
=
X
= PDCA 3 >
<
=
T
MACB 4 >
USBBDMA | 5 @ O >

ATMEL 5

32058K  AVR32-01/12



11. Fuses Settings

The flash block contains a number of general purpose fuses. Some of these fuses have defined
meanings outside the flash controller and are described in this section.

The general purpose fuses are erase by a JTAG chip erase.

11.1 Flash General Purpose Fuse Register (FGPFRLO)

Table 11-1. FGPFR Register Description

31 30 29 28 27 26 25 24
| GPFa GPF30 GPF29 BODEN | BODHYST BODLEVEL[5:4] |
23 22 21 20 19 18 17 16
| BODLEVEL[3:0] BOOTPROT EPFL |
15 14 13 12 11 10 9 8
| LOCK[15:8] |
7 6 5 4 3 2 1 0
| LOCKI7:0] |

BODEN: Brown Out Detector Enable

Table 11-2. BODEN Field Description

BODEN Description

0x0 BOD disabled

0x1 BOD enabled, BOD reset enabled
0x2 BOD enabled, BOD reset disabled
0x3 BOD disabled

BODHYST: Brown Out Detector Hysteresis

Table 11-3. BODEN Field Description
BODHYST Description
Ob The Brown out detector hysteresis is disabled

1b he Brown out detector hysteresis is enabled.

BODLEVEL: Brown Out Detector Trigger Level

This controls the voltage trigger level for the Brown out detector. Refer to sectionTable 38-6 on
page 765 for values description. If the BODLEVEL is set higher than VDDCORE and enabled by
fuses, the part will be in constant reset. To recover from this situation, apply an external voltage
on VDDCORE that is higher than the BOD level and disable the BOD.

ATMEL s

32058K  AVR32-01/12



LOCK, EPFL, BOOTPROT

These are Flash controller fuses and are described in the FLASHC section.

11.2 Default Fuse Value

32058K  AVR32-01/12

The devices are shipped with the FGPFRLO register value: OXFCO7FFFF:

* GPF31 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.

* GPF30 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.

» GPF29 fuse set to 1b. This fuse is used by the pre-programmed USB bootloader.

» BODEN fuses set to 11b. BOD is disabled.

+ BODHYST fuse set to 1b. The BOD hysteresis is enabled.

» BODLEVEL fuses set to 000000b. This is the minimum voltage trigger level for BOD.
* BOOTPROT fuses set to 011b. The bootloader protected size is 8 Ko.

» EPFL fuse set to 1b. External privileged fetch is not locked.

* LOCK fuses setto 1111111111111111b. No region locked.

See also the AT32UC3A Bootloader user guide document.

After the JTAG chip erase command, the FGPFRLO register value is OxFFFFFFFF.

ATMEL

37



12. Peripherals

12.1 Peripheral address map
Table 12-1.  Peripheral Address Mapping

Address
0xEO0000000
USBB
OxFFFEO000
USBB
OxFFFE1000
HMATRIX
OxFFFE1400
FLASHC
OxFFFE1800
MACB
OxFFFE1CO0
SMC
OxFFFE2000
SDRAMC
OxFFFF0000
PDCA
OxFFFF0800
INTC
OxFFFFOCO00
PM
OxFFFFODOO
RTC
OxFFFFOD30
WDT
OxFFFFOD80
EIC
OxFFFF1000
GPIO
OxFFFF1400
USARTO
OxFFFF1800
USART1

32058K  AVR32-01/12

Peripheral Name

USBB Slave Interface - USBB

USBB Configuration Interface - USBB

HMATRIX Configuration Interface - HMATRIX

Flash Controller - FLASHC

MACB Configuration Interface - MACB

Static Memory Controller Configuration Interface -

SMC

SDRAM Controller Configuration Interface -
SDRAMC

Peripheral DMA Interface - PDCA

Interrupt Controller Interface - INTC

Power Manager - PM

Real Time Clock - RTC

WatchDog Timer - WDT

External Interrupt Controller - EIC

General Purpose |0 Controller - GPIO

Universal Synchronous Asynchronous Receiver
Transmitter - USARTO

Universal Synchronous Asynchronous Receiver
Transmitter - USART1

ATMEL

Bus

HSB

PBB

PBB

PBB

PBB

PBB

PBB

PBA

PBA

PBA

PBA

PBA

PBA

PBA

PBA

PBA

38



Table 12-1.

12.2 CPU

32058K  AVR32-01/12

Peripheral Address Mapping (Continued)

Address Peripheral Name Bus
OxFFFF1C00 Universal Synchronous Asynchronous Receiver
USART2 Transmitter - USART2 PBA
OxFFFF2000 Universal Synchronous Asynchronous Receiver
USART3 Transmitter - USART3 PBA
OxFFFF2400
SPIO Serial Peripheral Interface - SPI0 PBA
OxFFFF2800
SPI1 Serial Peripheral Interface - SPI1 PBA
OxFFFF2C00
TWI Two Wire Interface - TWI PBA
OxFFFF3000
PWM Pulse Width Modulation Controller - PWM PBA
OxFFFF3400
SSC Synchronous Serial Controller - SSC PBA
OxFFFF3800
TC Timer/Counter - TC PBA
OxFFFF3C00
ADC Analog To Digital Converter - ADC PBA

Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to
being mapped on the Peripheral Bus. These registers can therefore be reached both by
accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since
the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at
CPU speed, one write or read operation can be performed per clock cycle to the local bus-
mapped GPIO registers.

ATMEL s



The following GPIO registers are mapped on the local bus:

Table 12-2.  Local bus mapped GPIO registers

Local Bus

Port Register Mode Address Access
0 Output Driver Enable Register (ODER) WRITE 0x4000_0040 Write-only
SET 0x4000_0044 Write-only
CLEAR 0x4000_0048 Write-only
TOGGLE 0x4000_004C Write-only
Output Value Register (OVR) WRITE 0x4000_0050 Write-only
SET 0x4000_0054 Write-only
CLEAR 0x4000_0058 Write-only
TOGGLE 0x4000_005C Write-only
Pin Value Register (PVR) - 0x4000_0060 Read-only
1 Output Driver Enable Register (ODER) WRITE 0x4000_0140 Write-only
SET 0x4000_0144 Write-only
CLEAR 0x4000_0148 Write-only
TOGGLE 0x4000_014C Write-only
Output Value Register (OVR) WRITE 0x4000_0150 Write-only
SET 0x4000_0154 Write-only
CLEAR 0x4000_0158 Write-only
TOGGLE 0x4000_015C Write-only
Pin Value Register (PVR) - 0x4000_0160 Read-only
2 Output Driver Enable Register (ODER) WRITE 0x4000_0240 Write-only
SET 0x4000_0244 Write-only
CLEAR 0x4000_0248 Write-only
TOGGLE 0x4000_024C Write-only
Output Value Register (OVR) WRITE 0x4000_0250 Write-only
SET 0x4000_0254 Write-only
CLEAR 0x4000_0258 Write-only
TOGGLE 0x4000_025C Write-only
Pin Value Register (PVR) - 0x4000_0260 Read-only

ATMEL i

32058K  AVR32-01/12



12.3 Interrupt Request Signal Map

32058K  AVR32-01/12

Table 12-2.  Local bus mapped GPIO registers
Local Bus

Port Register Mode Address Access
3 Output Driver Enable Register (ODER) WRITE 0x4000_0340 Write-only
SET 0x4000_0344 Write-only
CLEAR 0x4000_0348 Write-only
TOGGLE 0x4000_034C Write-only
Output Value Register (OVR) WRITE 0x4000_0350 Write-only
SET 0x4000_0354 Write-only
CLEAR 0x4000_0358 Write-only
TOGGLE 0x4000_035C Write-only
Pin Value Register (PVR) - 0x4000_0360 Read-only

The various modules may output Interrupt request signals. These signals are routed to the Inter-
rupt Controller (INTC), described in a later chapter. The Interrupt Controller supports up to 64
groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt
signals in the same group share the same autovector address and priority level. Refer to the
documentation for the individual submodules for a description of the semantics of the different

interrupt requests.

The interrupt request signals are connected to the INTC as follows.

Table 12-3. Interrupt Request Signal Map
Group Line Module Signal
0 0 AVRSZ UC CPU with optional MPU and SYSBLOCK
optional OCD COMPARE
0 External Interrupt Controller EICO
1 External Interrupt Controller EIC 1
2 External Interrupt Controller EIC 2
3 External Interrupt Controller EIC 3
4 External Interrupt Controller EIC 4
1 5 External Interrupt Controller EIC5
6 External Interrupt Controller EIC 6
7 External Interrupt Controller EIC7
8 Real Time Counter RTC
9 Power Manager PM
10 Frequency Meter FREQM

ATMEL

41



Table 12-3.  Interrupt Request Signal Map

0 General Purpose Input/Output GPIO 0
1 General Purpose Input/Output GPIO 1
2 General Purpose Input/Output GPIO 2
3 General Purpose Input/Output GPIO 3
4 General Purpose Input/Output GPIO 4
5 General Purpose Input/Output GPIO 5
6 General Purpose Input/Output GPIO 6
2 7 General Purpose Input/Output GPIO 7
8 General Purpose Input/Output GPIO 8
9 General Purpose Input/Output GPIO 9
10 General Purpose Input/Output GPIO 10
11 General Purpose Input/Output GPIO 11
12 General Purpose Input/Output GPIO 12
13 General Purpose Input/Output GPIO 13
0 Peripheral DMA Controller PDCAO
1 Peripheral DMA Controller PDCA 1
2 Peripheral DMA Controller PDCA 2
3 Peripheral DMA Controller PDCA 3
4 Peripheral DMA Controller PDCA 4
5 Peripheral DMA Controller PDCAS5
6 Peripheral DMA Controller PDCA 6
3 7 Peripheral DMA Controller PDCA7
8 Peripheral DMA Controller PDCA 8
9 Peripheral DMA Controller PDCA 9
10 Peripheral DMA Controller PDCA 10
11 Peripheral DMA Controller PDCA 11
12 Peripheral DMA Controller PDCA 12
13 Peripheral DMA Controller PDCA 13
14 Peripheral DMA Controller PDCA 14
4 0 Flash Controller FLASHC
: R e B
: o | s Syremerausiseronass | ygaery
7 O | Receermmanemiter oo USART2
: o | g Snaenasnaeoneis | s

ATMEL i

32058K  AVR32-01/12



Table 12-3.  Interrupt Request Signal Map
9 0 Serial Peripheral Interface SPIO
10 0 Serial Peripheral Interface SPI1
11 0 Two-wire Interface TWI
12 0 Pulse Width Modulation Controller PWM
13 0 Synchronous Serial Controller SSC
0 Timer/Counter TCO
14 1 Timer/Counter TC1
2 Timer/Counter TC2
15 0 Analog to Digital Converter ADC
16 0 Ethernet MAC MACB
17 0 USB 2.0 OTG Interface uSBB
18 0 SDRAM Controller SDRAMC
19 0 Audio Bitstream DAC DAC

12.4 Clock Connections

124.1 Timer/Counters
Each Timer/Counter channel can independently select an internal or external clock source for its
counter:
Table 12-4.  Timer/Counter clock connections
Source Name Connection
Internal TIMER_CLOCK1 32 KHz Oscillator
TIMER_CLOCK2 PBA clock / 2
TIMER_CLOCK3 PBA clock / 8
TIMER_CLOCK4 PBA clock / 32
TIMER_CLOCK5 PBA clock / 128
External XCO See Section 12.7
XCA1
XC2
12.4.2 USARTs

Each USART can be connected to an internally divided clock:

Table 12-5. USART clock connections
USART Source Name Connection
0 Internal CLK_DIV PBA clock / 8
1
2
3

32058K  AVR32-01/12

ATMEL

43



12.4.3 SPIs

Each SPI can be connected to an internally divided clock:

Table 12-6.  SPI clock connections
SPI Source Name Connection
0 Internal CLK_DIV PBA clock or
PBA clock / 32

1

12.5 Nexus OCD AUX port connections

12.6 PDC handshake signals

32058K  AVR32-01/12

If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spectively of the PIO configuration. Two different OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Tech-
nical Reference Manual.

Table 12-7. Nexus OCD AUX port connections
Pin AXS=0 AXS=1
EVTI_N PB19 PAO8
MDO[5] PB16 PA27
MDO[4] PB14 PA26
MDOI3] PB13 PA25
MDOI[2] PB12 PA24
MDOI[1] PB11 PA23
MDO[0] PB10 PA22
EVTO_N PB20 PB20
MCKO PB21 PA21
MSEOQI[1] PB04 PAO7
MSEQI0] PB17 PA28

The PDC and the peripheral modules communicate through a set of handshake signals. The fol-
lowing table defines the valid settings for the Peripheral Identifier (PID) in the PDC Peripheral
Select Register (PSR).

Table 12-8. PDC Handshake Signals
PID Value Peripheral module & direction
0 ADC
1 SSC - RX
2 USARTO - RX
3 USART1 - RX

ATMEL

44



Table 12-8. PDC Handshake Signals
PID Value Peripheral module & direction
4 USART2 - RX
5 USART3 - RX
6 TWI - RX
7 SPI0 - RX
8 SPI1 - RX
9 SSC - TX
10 USARTO - TX
11 USART1 - TX
12 USART2 - TX
13 USART3 - TX
14 TWI - TX
15 SPI0 - TX
16 SPI1-TX
17 ABDAC

12.7 Peripheral Multiplexing on 1/O lines

Each GPIO line can be assigned to one of 3 peripheral functions; A, B or C. The following table
define how the I/O lines on the peripherals A, B and C are multiplexed by the GPIO.

Table 12-9.  GPIO Controller Function Multiplexing
TQFP100 VQFP144 PIN GPIO Pin Function A Function B Function C
19 25 PA0O GPIOO USARTO - RXD TC - CLKO
20 27 PAO1 GPIO 1 USARTO - TXD TC - CLK1
23 30 PA02 GPIO 2 USARTO - CLK TC - CLK2
24 32 PAO3 GPIO 3 USARTO - RTS EIM - EXTINT[4] DAC - DATA[0]
25 34 PAO4 GPIO 4 USARTO - CTS EIM - EXTINT[5] DAC - DATANI0]
26 39 PAO5 GPIO 5 USART1 - RXD PWM - PWM4]
27 41 PA0G GPIO 6 USART1 - TXD PWM - PWM[5]
28 43 PAO7 GPIO7 USART1 - CLK PM - GCLKI0] SPIO0 - NPCS[3]
29 45 PAO8 GPIO 8 USART1 - RTS SPIO0 - NPCS[1] EIM - EXTINT[7]
30 47 PA09 GPIO 9 USART1 - CTS SPIO - NPCS[2] MACB - WOL
31 48 PA10 GPIO 10 SPIO0 - NPCS[0] EIM - EXTINT[6]
33 50 PA11 GPIO 11 SPIO - MISO USB - USB_ID
36 53 PA12 GPIO 12 SPIO - MOSI USB - USB_VBOF
37 54 PA13 GPIO 13 SPIO0 - SCK
39 56 PA14 GPIO 14 SSC - SPI1 - NPCS[0] EBI - NCSI0]
TX_FRAME_SYNC
40 57 PA15 GPIO 15 SSC - TX_CLOCK SPI1 - SCK EBI - ADDR[20]

32058K  AVR32-01/12

ATMEL

45



Table 12-9.  GPIO Controller Function Multiplexing
41 58 PA16 GPIO 16 SSC - TX_DATA SPI1 - MOSI EBI - ADDR[21]
42 60 PA17 GPIO 17 SSC - RX_DATA SPI1 - MISO EBI - ADDR[22]
43 62 PA18 GPIO 18 SSC - RX_CLOCK SPI1 - NPCS[1] MACB - WOL
44 64 PA19 GPIO 19 SSC - SPI1 - NPCS[2]
RX_FRAME_SYNC
45 66 PA20 GPIO 20 EIM - EXTINT[8] SPI1 - NPCS[3]
51 73 PA21 GPIO 21 ADC - AD[0] EIM - EXTINT[0] USB - USB_ID
52 74 PA22 GPIO 22 ADC - AD[1] EIM - EXTINT[1] USB - USB_VBOF
53 75 PA23 GPIO 23 ADC - AD[2] EIM - EXTINT[2] DAC - DATA[1]
54 76 PA24 GPIO 24 ADC - AD[3] EIM - EXTINT[3] DAC - DATAN[1]
55 77 PA25 GPIO 25 ADC - AD[4] EIM - SCAN[0] EBI - NCS[0]
56 78 PA26 GPIO 26 ADC - AD[5] EIM - SCAN[1] EBI - ADDR[20]
57 79 PA27 GPIO 27 ADC - AD[6] EIM - SCAN[2] EBI - ADDR[21]
58 80 PA28 GPIO 28 ADC - AD[7] EIM - SCAN[3] EBI - ADDR[22]
83 122 PA29 GPIO 29 TWI - SDA USART2 - RTS
84 123 PA30 GPIO 30 TWI - SCL USART2 - CTS
65 88 PB00 GPIO 32 MACB - TX_CLK USART2 - RTS USART3 - RTS
66 90 PBO1 GPIO 33 MACB - TX_EN USART2 - CTS USART3 - CTS
70 96 PB02 GPIO 34 MACB - TXD[0] DAC - DATA[0]
71 98 PB03 GPIO 35 MACB - TXD[1] DAC - DATAN[O]
72 100 PBO4 GPIO 36 MACB - CRS USART3 - CLK EBI - NCS[3]
73 102 PBO5 GPIO 37 MACB - RXD[0] DAC - DATA[1]
74 104 PB06 GPIO 38 MACB - RXD[1] DAC - DATAN[1]
75 106 PBO7 GPIO 39 MACB - RX_ER
76 111 PB08 GPIO 40 MACB - MDC
77 113 PB09 GPIO 41 MACB - MDIO
78 115 PB10 GPIO 42 MACB - TXD[2] USART3 - RXD EBI - SDCK
81 119 PB11 GPIO 43 MACB - TXD[3] USART3 - TXD EBI - SDCKE
82 121 PB12 GPIO 44 MACB - TX_ER TC - CLKO EBI - RAS
87 126 PB13 GPIO 45 MACB - RXD[2] TC - CLK1 EBI- CAS
88 127 PB14 GPIO 46 MACB - RXD[3] TC - CLK2 EBI - SDWE
95 134 PB15 GPIO 47 MACB - RX_DV
96 136 PB16 GPIO 48 MACB - COL USB - USB_ID EBI - SDA10
98 139 PB17 GPIO 49 MACB - RX_CLK USB - USB_VBOF EBI - ADDR[23]
99 141 PB18 GPIO 50 MACB - SPEED ADC - TRIGGER PWM - PWM[6]
100 143 PB19 GPIO 51 PWM - PWMI0] PM - GCLK[0] EIM - SCAN[4]
1 3 PB20 GPIO 52 PWM - PWM[1] PM - GCLK[1] EIM - SCAN[5]
2 5 PB21 GPIO 53 PWM - PWM[2] PM - GCLK[2] EIM - SCAN[6]
3 6 PB22 GPIO 54 PWM - PWM[3] PM - GCLK[3] EIM - SCAN[7]
6 9 PB23 GPIO 55 TC - A0 USART1 - DCD

32058K  AVR32-01/12

ATMEL

46



Table 12-9.  GPIO Controller Function Multiplexing
7 11 PB24 GPIO 56 TC-BO USART1 - DSR
8 13 PB25 GPIO 57 TC - A1 USART1 - DTR
9 14 PB26 GPIO 58 TC - B1 USART1 - RI
10 15 PB27 GPIO 59 TC-A2 PWM - PWM[4]
14 19 PB28 GPIO 60 TC-B2 PWM - PWM[5]
15 20 PB29 GPIO 61 USART2 - RXD PM - GCLK[1] EBI - NCS[2]
16 21 PB30 GPIO 62 USART2 - TXD PM - GCLK[2] EBI - SDCS
17 22 PB31 GPIO 63 USART2 - CLK PM - GCLK[3] EBI - NWAIT
63 85 PCO00 GPIO 64
64 86 PCO1 GPIO 65
85 124 PC02 GPIO 66
86 125 PCO3 GPIO 67
93 132 PC04 GPIO 68
94 133 PCO05 GPIO 69
1 PX00 GPIO 100 EBI - DATA[10] USARTO - RXD
2 PX01 GPIO 99 EBI - DATA[9] USARTO - TXD
4 PX02 GPIO 98 EBI - DATA[8] USARTO - CTS
10 PX03 GPIO 97 EBI - DATA[7] USARTO - RTS
12 PX04 GPIO 96 EBI - DATA[6] USART1 - RXD
24 PX05 GPIO 95 EBI - DATA[5] USART1 - TXD
26 PX06 GPIO 94 EBI - DATA[4] USART1 - CTS
31 PX07 GPIO 93 EBI - DATA[3] USART1 - RTS
33 PX08 GPIO 92 EBI - DATA[2] USART3 - RXD
35 PX09 GPIO 91 EBI - DATA[1] USART3 - TXD
38 PX10 GPIO 90 EBI - DATA[0] USART2 - RXD
40 PX11 GPIO 109 EBI - NWE1 USART2 - TXD
42 PX12 GPIO 108 EBI - NWEO USART2 - CTS
44 PX13 GPIO 107 EBI - NRD USART2 - RTS
46 PX14 GPIO 106 EBI - NCS[1] TC- A0
59 PX15 GPIO 89 EBI - ADDR[19] USART3 - RTS TC-BO
61 PX16 GPIO 88 EBI - ADDR[18] USART3 - CTS TC - A1
63 PX17 GPIO 87 EBI - ADDR[17] TC-B1
65 PX18 GPIO 86 EBI - ADDR[16] TC-A2
67 PX19 GPIO 85 EBI - ADDR[15] EIM - SCAN[0] TC-B2
87 PX20 GPIO 84 EBI - ADDR[14] EIM - SCAN[1] TC - CLKO
89 PX21 GPIO 83 EBI - ADDR[13] EIM - SCAN[2] TC - CLK1
91 PX22 GPIO 82 EBI - ADDR[12] EIM - SCAN[3] TC - CLK2
95 PX23 GPIO 81 EBI - ADDR[11] EIM - SCAN[4]
97 PX24 GPIO 80 EBI - ADDR[10] EIM - SCAN[5]

32058K  AVR32-01/12

ATMEL

47



Table 12-9.  GPIO Controller Function Multiplexing
99 PX25 GPIO 79 EBI - ADDR[9] EIM - SCAN[6]
101 PX26 GPIO 78 EBI - ADDR[8] EIM - SCAN[7]
103 PX27 GPIO 77 EBI - ADDR[7] SPIO - MISO
105 PX28 GPIO 76 EBI - ADDR[6] SPIO - MOSI
107 PX29 GPIO 75 EBI - ADDR[5] SPIO - SCK
110 PX30 GPIO 74 EBI - ADDR[4] SPI0 - NPCS[0]
112 PX31 GPIO 73 EBI - ADDR[3] SPI0 - NPCS[1]
114 PX32 GPIO 72 EBI - ADDR[2] SPI0 - NPCS[2]
118 PX33 GPIO 71 EBI - ADDR[1] SPI0 - NPCS[3]
120 PX34 GPIO 70 EBI - ADDR[0] SPI1 - MISO
135 PX35 GPIO 105 EBI - DATA[15] SPI1 - MOSI
137 PX36 GPIO 104 EBI - DATA[14] SPI1 - SCK
140 PX37 GPIO 103 EBI - DATA[13] SPI1 - NPCS[0]
142 PX38 GPIO 102 EBI - DATA[12] SPI1 - NPCS[1]
144 PX39 GPIO 101 EBI - DATA[11] SPI1 - NPCS[2]

12.8 Oscillator Pinout

The oscillators are not mapped to the normal A,B or C functions and their muxings are controlled
by registers in the Power Manager (PM). Please refer to the power manager chapter for more
information about this.

Table 12-10. Oscillator pinout

TQFP100 pin VQFP144 pin Pad Oscillator pin
85 124 PC02 xin0
93 132 PC04 xin1
63 85 PCO00 xin32
86 125 PCO03 xout0
94 133 PC05 xout1
64 86 PCO1 xout32
12.9 USART Configuration
Table 12-11. USART Supported Mode
SPI RS485 1ISO7816 IrDA Modem Mé‘:;:;itgr
USARTO Yes No No No No No
USART1 Yes Yes Yes Yes Yes Yes
USART2 Yes No No No No No
USART3 Yes No No No No No

32058K  AVR32-01/12

ATMEL

48



12.10 GPIO

The GPIO open drain feature (GPIO ODMER register (Open Drain Mode Enable Register)) is
not available for this device.

12.11 Peripheral overview

12.11.1 External Bus Interface

Optimized for Application Memory Space support
Integrates Two External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
Optimized External Bus:
— 16-bit Data Bus
— 24-bit Address Bus, Up to 16-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
4 SRAM Chip Selects, 1ISDRAM Chip Select:
— Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3

12.11.2 Static Memory Controller

4 Chip Selects Available

64-Mbyte Address Space per Chip Select

8-, 16-bit Data Bus

Word, Halfword, Byte Transfers

Byte Write or Byte Select Lines

Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
Programmable Data Float Time per Chip Select

Compliant with LCD Module

External Wait Request

Automatic Switch to Slow Clock Mode

Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

12.11.3 SDRAM Controller

32058K  AVR32-01/12

Numerous Configurations Supported
— 2K, 4K, 8K Row Address Memory Parts
— SDRAM with Two or Four Internal Banks
— SDRAM with 16-bit Data Path
Programming Facilities
— Word, Half-word, Byte Access
— Automatic Page Break When Memory Boundary Has Been Reached
— Multibank Ping-pong Access
— Timing Parameters Specified by Software
— Automatic Refresh Operation, Refresh Rate is Programmable
Energy-saving Capabilities
— Self-refresh, Power-down and Deep Power Modes Supported

ATMEL i



— Supports Mobile SDRAM Devices
* Error Detection
— Refresh Error Interrupt
* SDRAM Power-up Initialization by Software
* CAS Latency of 1, 2, 3 Supported
* Auto Precharge Command Not Used
12.11.4 USB Controller

* USB 2.0 Compliant, Full-/Low-Speed (FS/LS) and On-The-Go (OTG), 12 Mbit/s
* 7 Pipes/Endpoints
* 960 bytes of Embedded Dual-Port RAM (DPRAM) for Pipes/Endpoints
* Up to 2 Memory Banks per Pipe/Endpoint (Not for Control Pipe/Endpoint)
* Flexible Pipe/Endpoint Configuration and Management with Dedicated DMA Channels
* On-Chip Transceivers Including Pull-Ups
12.11.5 Serial Peripheral Interface

* Supports communication with serial external devices
— Four chip selects with external decoder support allow communication with up to 15
peripherals
— Serial memories, such as DataFlash and 3-wire EEPROMs
— Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External co-processors
* Master or slave serial peripheral bus interface
— 8- to 16-bit programmable data length per chip select
— Programmable phase and polarity per chip select
— Programmable transfer delays between consecutive transfers and between clock and data
per chip select
— Programmable delay between consecutive transfers
— Selectable mode fault detection
* Very fast transfers supported
— Transfers with baud rates up to Peripheral Bus A (PBA) max frequency
— The chip select line may be left active to speed up transfers on the same device
12.11.6 Two-wire Interface

* High speed up to 400kbit/s
* Compatibility with standard two-wire serial memory
* One, two or three bytes for slave address
* Sequential read/write operations
12.11.7 USART

* Programmable Baud Rate Generator

* 5-to 9-bit full-duplex synchronous or asynchronous serial communications
1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
— Parity generation and error detection

Framing error detection, overrun error detection

MSB- or LSB-first

Optional break generation and detection

By 8 or by-16 over-sampling receiver frequency

Hardware handshaking RTS-CTS

Receiver time-out and transmitter timeguard

Optional Multi-drop Mode with address generation and detection

ATMEL s

32058K  AVR32-01/12



— Optional Manchester Encoding
RS485 with driver control signal
1ISO7816, T =0 or T =1 Protocols for interfacing with smart cards
— NACK handling, error counter with repetition and iteration limit
IrDA modulation and demodulation
— Communication at up to 115.2 Kbps
Test Modes
— Remote Loopback, Local Loopback, Automatic Echo
SPI Mode
— Master or Slave
— Serial Clock Programmable Phase and Polarity
— SPI Serial Clock (SCK) Frequency up to Internal Clock Frequency PBA/4
Supports Connection of Two Peripheral DMA Controller Channels (PDC)
— Offers Buffer Transfer without Processor Intervention

12.11.8 Serial Synchronous Controller

12.11.9 Timer Counter

Provides serial synchronous communication links used in audio and telecom applications (with
CODECs in Master or Slave Modes, 12S, TDM Buses, Magnetic Card Reader, etc.)

Contains an independent receiver and transmitter and a common clock divider

Offers a configurable frame sync and data length

Receiver and transmitter can be programmed to start automatically or on detection of different
event on the frame sync signal

Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

Three 16-bit Timer Counter Channels
Wide range of functions including:
— Frequency Measurement
— Event Counting
Interval Measurement
Pulse Generation
Delay Timing
Pulse Width Modulation
Up/down Capabilities
Each channel is user-configurable and contains:
— Three external clock inputs
— Five internal clock inputs
— Two multi-purpose input/output signals
Two global registers that act on all three TC Channels

12.11.10 Pulse Width Modulation Controller

32058K  AVR32-01/12

7 channels, one 20-bit counter per channel
Common clock generator, providing Thirteen Different Clocks
— A Modulo n counter providing eleven clocks
— Two independent Linear Dividers working on modulo n counter outputs
Independent channel programming
Independent Enable Disable Commands
Independent Clock
Independent Period and Duty Cycle, with Double Bufferization
Programmable selection of the output waveform polarity
— Programmable center or left aligned output waveform

ATMEL 2



12.11.11 Ethernet 10/200 MAC

* Compatibility with IEEE Standard 802.3
* 10 and 100 Mbits per second data throughput capability
* Full- and half-duplex operations
* MIl or RMIl interface to the physical layer
* Register Interface to address, data, status and control registers
* DMA Interface, operating as a master on the Memory Controller
* Interrupt generation to signal receive and transmit completion
* 28-byte transmit and 28-byte receive FIFOs
* Automatic pad and CRC generation on transmitted frames
* Address checking logic to recognize four 48-bit addresses
* Support promiscuous mode where all valid frames are copied to memory
* Support physical layer management through MDIO interface control of alarm and update
time/calendar data
12.11.12 Audio Bitstream DAC

* Digital Stereo DAC
* Oversampled D/A conversion architecture
— Oversampling ratio fixed 128x
— FIR equalization filter
— Digital interpolation filter: Comb4
— 3rd Order Sigma-Delta D/A converters
* Digital bitstream outputs
* Parallel interface
* Connected to Peripheral DMA Controller for background transfer without CPU intervention

ATMEL 5

32058K  AVR32-01/12



13. Power Manager (PM)

Rev: 2.0.0.1
13.1 Features

* Controls integrated oscillators and PLLs

* Generates clocks and resets for digital logic

* Supports 2 crystal oscillators 450 kHz-16 MHz

* Supports 2 PLLs 80-240 MHz

* Supports 32 KHz ultra-low power oscillator

* Integrated low-power RC oscillator

* On-the fly frequency change of CPU, HSB, PBA, and PBB clocks

* Sleep modes allow simple disabling of logic clocks, PLLs, and oscillators

* Module-level clock gating through maskable peripheral clocks

* Wake-up from internal or external interrupts

* Generic clocks with wide frequency range provided

* Automatic identification of reset sources

* Controls brownout detector (BOD), RC oscillator, and bandgap voltage reference through control
and calibration registers

13.2 Description

The Power Manager (PM) controls the oscillators and PLLs, and generates the clocks and
resets in the device. The PM controls two fast crystal oscillators, as well as two PLLs, which can
multiply the clock from either oscillator to provide higher frequencies. Additionally, a low-power
32 KHz oscillator is used to generate the real-time counter clock for high accuracy real-time
measurements. The PM also contains a low-power RC oscillator with fast start-up time, which
can be used to clock the digital logic.

The provided clocks are divided into synchronous and generic clocks. The synchronous clocks
are used to clock the main digital logic in the device, namely the CPU, and the modules and
peripherals connected to the HSB, PBA, and PBB buses. The generic clocks are asynchronous
clocks, which can be tuned precisely within a wide frequency range, which makes them suitable
for peripherals that require specific frequencies, such as timers and communication modules.

The PM also contains advanced power-saving features, allowing the user to optimize the power
consumption for an application. The synchronous clocks are divided into three clock domains,
one for the CPU and HSB, one for modules on the PBA bus, and one for modules on the PBB
bus.The three clocks can run at different speeds, so the user can save power by running periph-
erals at a relatively low clock, while maintaining a high CPU performance. Additionally, the
clocks can be independently changed on-the-fly, without halting any peripherals. This enables
the user to adjust the speed of the CPU and memories to the dynamic load of the application,
without disturbing or re-configuring active peripherals.

Each module also has a separate clock, enabling the user to switch off the clock for inactive
modules, to save further power. Additionally, clocks and oscillators can be automatically
switched off during idle periods by using the sleep instruction on the CPU. The system will return
to normal on occurrence of interrupts.

The Power Manager also contains a Reset Controller, which collects all possible reset sources,
generates hard and soft resets, and allows the reset source to be identified by software.

ATMEL e

32058K  AVR32-01/12



13.3 Block Diagram

» Synchronous
RCOSC | Synchronous | " clocks -
~ | Clock Generator CPU, HSB,
—- PBA, PBB
Oscillator 0 >
»| PLLO
Oscillator 1 »| PLL1
L
Generic Clock
—Generic clocks#
> Generator
32 KHz 32 KHz clock_,
Oscillator for RTC
OSC/PLL
Control signals . RC
"1 Oscillator
—Slow clock——=
Y
Oscillator and | Startup
PLL Control | Counter
A
-§-Voltage Regulator=—
interrupts—»| Sleep Controller |a— S’
p instruction
Calibration ?
fuses—p| .
Registers
A\
Brown-Out
» Reset Controller resets—
Detector
Power-On o
Detector o
A
Other reset
sources
External Reset Pad

Figure 13-1. Power Manager block diagram

ATMEL 2

32058K  AVR32-01/12



13.4 Product Dependencies

13.4.1

13.4.2

13.4.3

13.5

1351

13.5.2

I/O Lines

Interrupt

The PM provides a number of generic clock outputs, which can be connected to output pins,
multiplexed with GPIO lines. The programmer must first program the GPIO controller to assign
these pins to their peripheral function. If the I/O pins of the PM are not used by the application,
they can be used for other purposes by the GPIO controller.

The PM interrupt line is connected to one of the internal sources of the interrupt controller. Using
the PM interrupt requires the interrupt controller to be programmed first.

Clock implementation

In AT32UCS3A, the HSB shares the source clock with the CPU. This means that writing to the
HSBDIV and HSBSEL bits in CKSEL has no effect. These bits will always read the same as
CPUDIV and CPUSEL.

Functional Description

Slow clock

The slow clock is generated from an internal RC oscillator which is always running, except in
Static mode. The slow clock can be used for the main clock in the device, as described in "Syn-
chronous clocks” on page 58. The slow clock is also used for the Watchdog Timer and
measuring various delays in the Power Manager.

The RC oscillator has a 3 cycles startup time, and is always available when the CPU is running.
The RC oscillator operates at approximately 115 kHz, and can be calibrated to a narrow range
by the RCOSCCAL fuses. Software can also change RC oscillator calibration through the use of
the RCCR register. Please see the Electrical Characteristics section for details.

RC oscillator can also be used as the RTC clock when crystal accuracy is not required.

Oscillator 0 and 1 operation

32058K  AVR32-01/12

The two main oscillators are designed to be used with an external 450 kHz to 16 MHz crystal
and two biasing capacitors, as shown in Figure 13-2. Oscillator O can be used for the main clock
in the device, as described in "Synchronous clocks” on page 58. Both oscillators can be used as
source for the generic clocks, as described in "Generic clocks” on page 61.

The oscillators are disabled by default after reset. When the oscillators are disabled, the XIN and
XOUT pins can be used as general purpose 1/0s. When the oscillators are configured to use an
external clock, the clock must be applied to the XIN pin while the XOUT pin can be used as a
general purpose /0.

The oscillators can be enabled by writing to the OSCnEN bits in MCCTRL. Operation mode
(external clock or crystal) is chosen by writing to the MODE field in OSCCTRLn. Oscillators are
automatically switched off in certain sleep modes to reduce power consumption, as described in
Section 13.5.7 on page 60.

After a hard reset, or when waking up from a sleep mode that disabled the oscillators, the oscil-
lators may need a certain amount of time to stabilize on the correct frequency. This start-up time
can be set in the OSCCTRLn register.

ATMEL 5



The PM masks the oscillator outputs during the start-up time, to ensure that no unstable clocks
propagate to the digital logic. The OSCnRDY bits in POSCSR are automatically set and cleared
according to the status of the oscillators. A zero to one transition on these bits can also be con-
figured to generate an interrupt, as described in "Interrupt Enable/Disable/Mask/Status/Clear” on
page 76.

Co

XouT |Z |||

XIN & |||

o

Figure 13-2. Oscillator connections

13.5.3 32 KHz oscillator operation

The 32 KHz oscillator operates as described for Oscillator 0 and 1 above. The 32 KHz oscillator
is used as source clock for the Real-Time Counter.

The oscillator is disabled by default, but can be enabled by writing OSC32EN in OSCCTRL32.
The oscillator is an ultra-low power design and remains enabled in all sleep modes except Static
mode.

While the 32 KHz oscillator is disabled, the XIN32 and XOUT32 pins are available as general
purpose I/Os. When the oscillator is configured to work with an external clock (MODE field in
OSCCTRL32 register), the external clock must be connected to XIN32 while the XOUT32 pin
can be used as a general purpose 1/O.

The startup time of the 32 KHz oscillator can be set in the OSCCTRL32, after which OSC32RDY
in POSCSR is set. An interrupt can be generated on a zero to one transition of OSC32RDY.

As a crystal oscillator usually requires a very long startup time (up to 1 second), the 32 KHz
oscillator will keep running across resets, except Power-On-Reset.

1354 PLL operation

The device contains two PLLs, PLLO and PLL1. These are disabled by default, but can be
enabled to provide high frequency source clocks for synchronous or generic clocks. The PLLs
can take either Oscillator 0 or 1 as reference clock. The PLL output is divided by a multiplication
factor, and the PLL compares the resulting clock to the reference clock. The PLL will adjust its
output frequency until the two compared clocks are equal, thus locking the output frequency to a
multiple of the reference clock frequency.

The Voltage Controlled Oscillator inside the PLL can generate frequencies from 80 to 240 MHz.
To make the PLL output frequencies under 80 MHz the OTP[1] bitfield could be set. This will

ATMEL L

32058K  AVR32-01/12



divide the output of the PLL by two and bring the clock in range of the max frequency of the
CPU.

When the PLL is switched on, or when changing the clock source or multiplication factor for the
PLL, the PLL is unlocked and the output frequency is undefined. The PLL clock for the digital
logic is automatically masked when the PLL is unlocked, to prevent connected digital logic from
receiving a too high frequency and thus become unstable.

PLLMUL
PLLOPTI[1]
Output e fyco £
Divider I PLL
OscO
—_— Phase Lock | .
clock Input Detector ™1 VCO B D etector ock bit———
Osci Divider
clock

PLLOSC PLLDIV F""‘|OPT

Figure 13-3. PLL with control logic and filters

13.54.1 Enabling the PLL

PLLn is enabled by writing the PLLEN bit in the PLLn register. PLLOSC selects Oscillator 0 or 1
as clock source. The PLLMUL and PLLDIV bitfields must be written with the multiplication and
division factors, respectively, creating the voltage controlled ocillator frequency fy,coand the PLL
frequency fp | :

fuco = (PLLMUL+1)/(PLLDIV) « fogc if PLLDIV > 0.
fyco = 2*(PLLMUL+1) » foqc if PLLDIV = 0.

If PLLOPTI1] field is set to O:

feLL = fuco.
If PLLOPTI1] field is set to 1:
forL = fuco /2,

The PLLn:PLLOPT field should be set to proper values according to the PLL operating fre-
quency. The PLLOPT field can also be set to divide the output frequency of the PLLs by 2.

The lock signal for each PLL is available as a LOCKn flag in POSCSR. An interrupt can be gen-
erated on a 0 to 1 transition of these bits.

ATMEL 5

32058K  AVR32-01/12



13.5.5 Synchronous clocks

The slow clock (default), Oscillator 0, or PLLO provide the source for the main clock, which is the
common root for the synchronous clocks for the CPU/HSB, PBA, and PBB modules. The main
clock is divided by an 8-bit prescaler, and each of these four synchronous clocks can run from
any tapping of this prescaler, or the undivided main clock, as long as fop [ fpga g - The synchro-
nous clock source can be changed on-the fly, responding to varying load in the application. The
clock domains can be shut down in sleep mode, as described in "Sleep modes” on page 60.
Additionally, the clocks for each module in the four domains can be individually masked, to avoid
power consumption in inactive modules.

Sleep Sleep
instruction Controller
] L.
I
—Slow clock : i Main C|00k1:E> » Mask | I| ] I'_CPU clocks™ ™
ot sl | Prescaler | TS
I criow CPUMASK | | I PBAclocks
: | I | PBB clocks ™
MCSEL | CPUSEL | (I : I
| by |
| by
__________________ I | |
L e ____ 1!
| L
__________________ ] |
|
__________________ J
Figure 13-4. Synchronous clock generation
13.5.5.1 Selecting PLL or oscillator for the main clock
The common main clock can be connected to the slow clock, Oscillator 0, or PLLO. By default,
the main clock will be connected to the slow clock. The user can connect the main clock to Oscil-
lator 0 or PLLO by writing the MCSEL bitfield in the Main Clock Control Register (MCCTRL). This
must only be done after that unit has been enabled, otherwise a deadlock will occur. Care
should also be taken that the new frequency of the synchronous clocks does not exceed the
maximum frequency for each clock domain.
13.5.5.2 Selecting synchronous clock division ratio

32058K  AVR32-01/12

The main clock feeds an 8-bit prescaler, which can be used to generate the synchronous clocks.
By default, the synchronous clocks run on the undivided main clock. The user can select a pres-

ATMEL s



caler division for the CPU clock by writing CKSEL:CPUDIV to 1 and CPUSEL to the prescaling
value, resulting in a CPU clock frequency:

fCPU = fmain / 2(CPUSEL+1)

Similarly, the clock for the PBA, and PBB can be divided by writing their respective bitfields. To
ensure correct operation, frequencies must be selected so that fop [ fpga g AlSO, frequencies
must never exceed the specified maximum frequency for each clock domain.

CKSEL can be written without halting or disabling peripheral modules. Writing CKSEL allows a
new clock setting to be written to all synchronous clocks at the same time. It is possible to keep
one or more clocks unchanged by writing the same value a before to the xxxDIV and xxxSEL bit-
fields. This way, it is possible to e.g. scale CPU and HSB speed according to the required
performance, while keeping the PBA and PBB frequency constant.

13.5.5.3 Clock Ready flag

There is a slight delay from CKSEL is written and the new clock setting becomes effective. Dur-
ing this interval, the Clock Ready (CKRDY) flag in ISR will read as 0. If IER:CKRDY is written to
1, the Power Manager interrupt can be triggered when the new clock setting is effective. CKSEL
must not be re-written while CKRDY is 0, or the system may become unstable or hang.

13.5.6 Peripheral clock masking

By default, the clock for all modules are enabled, regardless of which modules are actually being
used. It is possible to disable the clock for a module in the CPU, HSB, PBA, or PBB clock
domain by writing the corresponding bit in the Clock Mask register (CPU/HSB/PBA/PBB) to 0.
When a module is not clocked, it will cease operation, and its registers cannot be read or written.
The module can be re-enabled later by writing the corresponding mask bit to 1.

A module may be connected to several clock domains, in which case it will have several mask
bits.

Table 13-5 contains a list of implemented maskable clocks.

13.5.6.1 Cautionary note

Note that clocks should only be switched off if it is certain that the module will not be used.
Switching off the clock for the internal RAM will cause a problem if the stack is mapped there.
Switching off the clock to the Power Manager (PM), which contains the mask registers, or the
corresponding PBx bridge, will make it impossible to write the mask registers again. In this case,
they can only be re-enabled by a system reset.

13.5.6.2 Mask Ready flag

Due to synchronization in the clock generator, there is a slight delay from a mask register is writ-
ten until the new mask setting goes into effect. When clearing mask bits, this delay can usually
be ignored. However, when setting mask bits, the registers in the corresponding module must
not be written until the clock has actually be re-enabled. The status flag MSKRDY in ISR pro-
vides the required mask status information. When writing either mask register with any value,
this bit is cleared. The bit is set when the clocks have been enabled and disabled according to
the new mask setting. Optionally, the Power Manager interrupt can be enabled by writing the
MSKRDY bit in IER.

ATMEL 5

32058K  AVR32-01/12



13.5.7 Sleep modes

In normal operation, all clock domains are active, allowing software execution and peripheral
operation. When the CPU is idle, it is possible to switch off the CPU clock and optionally other
clock domains to save power. This is activated by the sleep instruction, which takes the sleep
mode index number as argument.

13.5.7.1 Entering and exiting sleep modes
The sleep instruction will halt the CPU and all modules belonging to the stopped clock domains.
The modules will be halted regardless of the bit settings of the mask registers.
Oscillators and PLLs can also be switched off to save power. Some of these modules have a rel-
atively long start-up time, and are only switched off when very low power consumption is
required.
The CPU and affected modules are restarted when the sleep mode is exited. This occurs when
an interrupt triggers. Note that even if an interrupt is enabled in sleep mode, it may not trigger if
the source module is not clocked.
13.5.7.2 Supported sleep modes
The following sleep modes are supported. These are detailed in Table 13-1.
«ldle: The CPU is stopped, the rest of the chip is operating. Wake-up sources are any interrupt.
*Frozen: The CPU and HSB modules are stopped, peripherals are operating. Wake-up sources
are any interrupt from PB modules.
«Standby: All synchronous clocks are stopped, but oscillators and PLLs are running, allowing
quick wake-up to normal mode. Wake-up sources are RTC or external interrupt (EIC).
+Stop: As Standby, but Oscillator 0 and 1, and the PLLs are stopped. 32 KHz (if enabled) and
RC oscillators and RTC/WDT still operate. Wake-up sources are RTC, external interrupt (EIC),
or external reset pin.
*DeepStop: All synchronous clocks, Oscillator 0 and 1 and PLL 0 and 1 are stopped. 32 KHz
oscillator can run if enabled. RC oscillator still operates. Bandgap voltage reference and BOD is
turned off. Wake-up sources are RTC, external interrupt (EIC) or external reset pin.
«Static: All oscillators, including 32 KHz and RC oscillator are stopped. Bandgap voltage refer-
ence BOD detector is turned off. Wake-up sources are external interrupt (EIC) in asynchronous
mode only or external reset pin.
Table 13-1. Sleep modes
PBA,B Osc0,1 BOD & Voltage
Index Sleep Mode CPU HSB GCLK PLLO,1 Osc32 RCOsc | Bandgap | Regulator
0 Idle Stop Run Run Run Run Run On Full power
1 Frozen Stop Stop Run Run Run Run On Full power
2 Standby Stop Stop Stop Run Run Run On Full power
3 Stop Stop Stop Stop Stop Run Run On Low power
4 DeepStop Stop Stop Stop Stop Run Run Off Low power
5 Static Stop Stop Stop Stop Stop Stop Off Low power

32058K  AVR32-01/12

ATMEL o



The power level of the internal voltage regulator is also adjusted according to the sleep mode to
reduce the internal regulator power consumption.

13.5.7.3 Precautions when entering sleep mode

13.5.7.4 Wake up

13.5.8 Generic clocks

32058K  AVR32-01/12

Modules communicating with external circuits should normally be disabled before entering a
sleep mode that will stop the module operation. This prevents erratic behavior when entering or
exiting sleep mode. Please refer to the relevant module documentation for recommended
actions.

Communication between the synchronous clock domains is disturbed when entering and exiting
sleep modes. This means that bus transactions are not allowed between clock domains affected
by the sleep mode. The system may hang if the bus clocks are stopped in the middle of a bus
transaction.

The CPU is automatically stopped in a safe state to ensure that all CPU bus operations are com-
plete when the sleep mode goes into effect. Thus, when entering Idle mode, no further action is
necessary.

When entering a sleep mode (except Idle mode), all HSB masters must be stopped before
entering the sleep mode. Also, if there is a chance that any PB write operations are incomplete,
the CPU should perform a read operation from any register on the PB bus before executing the
sleep instruction. This will stall the CPU while waiting for any pending PB operations to
complete.

The USB can be used to wake up the part from sleep modes through register PM_AWEN of the
Power Manager.

Timers, communication modules, and other modules connected to external circuitry may require
specific clock frequencies to operate correctly. The Power Manager contains an implementation
defined number of generic clocks that can provide a wide range of accurate clock frequencies.

Each generic clock module runs from either Oscillator 0 or 1, or PLLO or 1. The selected source
can optionally be divided by any even integer up to 512. Each clock can be independently
enabled and disabled, and is also automatically disabled along with peripheral clocks by the
Sleep Controller.

ATMEL o



AT32UC3A

Sleep
Controller
——0sc0 clock Mask —Generic Clock—»
——0Osc1 clock P
——PLLO clock »|  Divider
—PLL1 clock
PLLSEL DIVEN CEN

OSCSEL DIV | |

Figure 13-5. Generic clock generation
13.5.8.1 Enabling a generic clock

A generic clock is enabled by writing the CEN bit in GCCTRL to 1. Each generic clock can use
either Oscillator 0 or 1 or PLLO or 1 as source, as selected by the PLLSEL and OSCSEL bits.
The source clock can optionally be divided by writing DIVEN to 1 and the division factor to DIV,
resulting in the output frequency:

fock = fsre / (24(DIV+1))

13.5.8.2 Disabling a generic clock

The generic clock can be disabled by writing CEN to 0 or entering a sleep mode that disables
the PB clocks. In either case, the generic clock will be switched off on the first falling edge after
the disabling event, to ensure that no glitches occur. If CEN is written to 0, the bit will still read as
1 until the next falling edge occurs, and the clock is actually switched off. When writing CEN to O,
the other bits in GCCTRL should not be changed until CEN reads as 0, to avoid glitches on the
generic clock.

When the clock is disabled, both the prescaler and output are reset.
13.5.8.3 Changing clock frequency
When changing generic clock frequency by writing GCCTRL, the clock should be switched off by

the procedure above, before being re-enabled with the new clock source or division setting. This
prevents glitches during the transition.

ATMEL o

32058K  AVR32-01/12



13.5.84 Generic clock implementation

In AT32UC3A, there are 6 generic clocks. These are allocated to different functions as shown in
Table 13-2.

Table 13-2.  Generic clock allocation

Clock number | Function
0 GCLKO pin
1 GCLK1 pin
2 GCLK2 pin
3 GCLKS pin
4 USBB
5 ABDAC

13.5.9 Divided PB clocks

The clock generator in the Power Manager provides divided PBA and PBB clocks for use by
peripherals that require a prescaled PBx clock. This is described in the documentation for the
relevant modules.

The divided clocks are not directly maskable, but are stopped in sleep modes where the PBx
clocks are stopped.

13.5.10 Debug operation

During a debug session, the user may need to halt the system to inspect memory and CPU reg-
isters. The clocks normally keep running during this debug operation, but some peripherals may
require the clocks to be stopped, e.g. to prevent timer overflow, which would cause the program
to fail. For this reason, peripherals on the PBA and PBB buses may use “debug qualified” PBx
clocks. This is described in the documentation for the relevant modules. The divided PBx clocks
are always debug qualified clocks.

Debug qualified PB clocks are stopped during debug operation. The debug system can option-
ally keep these clocks running during the debug operation. This is described in the
documentation for the On-Chip Debug system.

13.5.11 Reset Controller

32058K  AVR32-01/12

The Reset Controller collects the various reset sources in the system and generates hard and
soft resets for the digital logic.

The device contains a Power-On Detector, which keeps the system reset until power is stable.
This eliminates the need for external reset circuitry to guarantee stable operation when powering
up the device.

ATMEL o



It is also possible to reset the device by asserting the RESET_N pin. This pin has an internal pul-
lup, and does not need to be driven externally when negated. Table 13-4 lists these and other
reset sources supported by the Reset Controller.

RC_RCAUSE
RESET_N >
Power-On L CPU, HSB,
Detector o PBA, PBB
Reset
Brownout L Controller » OCD, RTC/WDT
Detector o Clock Generato
JTAG—————
OCD—————
W atchdog Reset————m»

Figure 13-6. Reset Controller block diagram

In addition to the listed reset types, the JTAG can keep parts of the device statically reset
through the JTAG Reset Register. See JTAG documentation for details.

Table 13-3.  Reset description

Reset source

Description

Power-on Reset

Supply voltage below the power-on reset detector threshold
voltage

External Reset

RESET_N pin asserted

Brownout Reset

Supply voltage below the brownout reset detector threshold
voltage

CPU Error

Caused by an illegal CPU access to external memory while
in Supervisor mode

Watchdog Timer

See watchdog timer documentation.

OCD

See On-Chip Debug documentation

When a Reset occurs, some parts of the chip are not necessarily reset, depending on the reset
source. Only the Power On Reset (POR) will force a reset of the whole chip.

32058K  AVR32-01/12

ATMEL o



Table 13-4 lists parts of the device that are reset, depending on the reset source.

Table 13-4.

Effect of the different reset events

Power-On
Reset

External
Reset

Watchdog
Reset

BOD
Reset

CPU Error
Reset

OCD
Reset

CPU/HSB/PBA/PBB
(excluding Power Manager)

Y

Y

Y

Y

32 KHz oscillator

RTC control register

GPLP registers

Watchdog control register

Voltage Calibration register

RC Oscillator Calibration register

BOD control register

Bandgap control register

Clock control registers

Osc0/Osc1 and control registers

PLLO/PLL1 and control registers

OCD system and OCD registers

<|=<|=<|=<|<|<|<|=</<|<|<|x<

<|<|<|<|<x|<xlzlz/ x|z z|z

Z | K| K| K|Z2|Z2|Z2|Z2|z|z2|Z2 |2

< | K| X[ K|Z2|Z2|Z2|Z2||Z2|Z2|2

< | K| K| K|Z2|Z2|Z2|Z2||Z2|Z2|2

Z| XX || Z2|Z2|lZz2|Z2/<K|Z2|Z2|Z2

13.5.11.1

13.5.11.2

32058K  AVR32-01/12

The cause of the last reset can be read from the RCAUSE register. This register contains one bit
for each reset source, and can be read during the boot sequence of an application to determine
the proper action to be taken.

Power-On Detector

The Power-On Detector monitors the VDDCORE supply pin and generates a reset when the
device is powered on. The reset is active until the supply voltage from the linear regulator is
above the power-on threshold level. The reset will be re-activated if the voltage drops below the
power-on threshold level. See Electrical Characteristics for parametric details.

Brown-Out Detector

The Brown-Out Detector (BOD) monitors the VDDCORE supply pin and compares the supply
voltage to the brown-out detection level, as set in BOD:LEVEL. The BOD is disabled by default,
but can be enabled either by software or by flash fuses. The Brown-Out Detector can either gen-
erate an interrupt or a reset when the supply voltage is below the brown-out detection level. In
any case, the BOD output is available in bit POSCR:BODET bit.

Note that any change to the BOD:LEVEL field of the BOD register should be done with the BOD
deactivated to avoid spurious reset or interrupt.

See Electrical Characteristics for parametric details.

ATMEL o



13.5.11.3 External Reset

The external reset detector monitors the state of the RESET_N pin. By default, a low level on
this pin will generate a reset.

13.5.12 Calibration registers

The Power Manager controls the calibration of the RC oscillator, voltage regulator, bandgap
voltage reference through several calibrations registers.

Those calibration registers are loaded after a Power On Reset with default values stored in fac-
tory-programmed flash fuses.

Although it is not recommended to override default factory settings, it is still possible to override
these default values by writing to those registers. To prevent unexpected writes due to software
bugs, write access to these registers is protected by a “key”. First, a write to the register must be
made with the field “KEY” equal to 0x55 then a second write must be issued with the “KEY” field
equal to OxAA

13.6 User Interface

Offset Register Name Access Reset State
0x0000 Main Clock Control MCCTRL Read/Write 0x00000000
0x0004 Clock Select CKSEL Read/Write 0x00000000
0x0008 CPU Mask CPUMASK Read/Write 0x00000003
0x000C HSB Mask HSBMASK Read/Write 0x0000007F
0x0010 PBA Mask PBAMASK Read/Write 0x0000FFFF
0x0014 PBB Mask PBBMASK Read/Write 0x0000003F
0x0018 - 0x001C Reserved
0x0020 PLLO Control PLLO Read/Write 0x00000000
0x0024 PLL1 Control PLL1 Read/Write 0x00000000
0x0028 Oscillator 0 Control Register OSCCTRLO Read/Write 0x00000000
0x002C Oscillator 1 Control Register OSCCTRL1 Read/Write 0x00000000
0x0030 Oscillator 32 Control Register OSCCTRL32 Read/Write 0x00000000
0x0034 Reserved
0x0038 Reserved
0x003C Reserved
0x0040 PM Interrupt Enable Register IER Write Only 0x00000000
0x0044 PM Interrupt Disable Register IDR Write Only 0x00000000
0x0048 PM Interrupt Mask Register IMR Read Only 0x00000000
0x004C PM Interrupt Status Register ISR Read Only 0x00000000
0x0050 PM Interrupt Clear Register ICR Write Only 0x00000000
0x0054 Power and Oscillators Status Register POSCSR Read/Write 0x00000000
0x0058 - 0x005C Reserved

ATMEL o

32058K  AVR32-01/12



0x0060 Generic Clock Control GCCTRL Read/Write 0x00000000
0x0064 - 0x00BC Reserved

0x00C0 RC Oscillator Calibration Register RCCR Read/Write Factory settings
0x00C4 Bandgap Calibration Register BGCR Read/Write Factory settings
0x00C8 Linear Regulator Calibration Register VREGCR Read/Write Factory settings
0x00CC Reserved

0x00D0 BOD Level Register BOD Read/Write BOD fuses in Flash
0x00D4 - 0x013C Reserved

0x0140 Reset Cause Register RCAUSE Read Only Latest Reset Source
0x0144 - 0x01FC Reserved

0x0200 General Purpose Low-Power register 0 GPLPO Read/Write 0x00000000
0x0204 General Purpose Low-Power register 1 GPLP1 Read/Write 0x00000000

ATMEL o

32058K  AVR32-01/12



13.6.1 Main Clock Control

Name: MCCTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | - - | -
23 22 21 20 19 18 17 16

| | - - | I
15 14 13 12 11 10 9 8

| | | | | | | | |
7 6 5 4 3 2 1 0

| ] | ] | | | OSCIEN | OSCOEN | MCSEL |

* MCSEL: Main Clock Select
0: The slow clock is the source for the main clock
1: Oscillator 0 is source for the main clock
2: PLLO is source for the main clock
3: Reserved
* OSCOEN: Oscillator 0 Enable
0: Oscillator 0 is disabled
1: Oscillator 0 is enabled
* OSCI1EN: Oscillator 1 Enable
0: Oscillator 1is disabled
1: Oscillator 1is enabled

ATMEL o

32058K  AVR32-01/12



13.6.2 Clock Select

Name: CKSEL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ PBBDIV ‘ - ‘ - ‘ - ‘ - ‘ PBBSEL ‘
23 22 21 20 19 18 17 16

‘ PBADIV ‘ - ‘ - ‘ - ‘ - ‘ PBASEL ‘
15 14 13 12 11 10 9 8

‘ HSBDIV ‘ - ‘ - ‘ - ‘ - ‘ HSBSEL ‘
7 6 5 4 3 2 1 0

‘ CPUDIV ‘ - ‘ - ‘ - ‘ - ‘ CPUSEL ‘

PBBDIV, PBBSEL: PBB Division and Clock Select

PBBDIV = 0: PBB clock equals main clock.

PBBDIV = 1: PBB clock equals main clock divided by 2(PBBSEL+1),
PBADIV, PBASEL: PBA Division and Clock Select

PBADIV = 0: PBA clock equals main clock.

PBADIV = 1: PBA clock equals main clock divided by 2(PBASEL+1),
HSBDIV, HSBSEL: HSB Division and Clock Select

For the AT32UC3A, HSBDIV always equals CPUDIV, and HSBSEL always equals CPUSEL, as the HSB clock is always equal to

the CPU clock.
CPUDIV, CPUSEL: CPU Division and Clock Select

CPUDIV = 0: CPU clock equals main clock.

CPUDIV = 1: CPU clock equals main clock divided by 2(CPUSEL+1),

Note that if xxxDIV is written to 0, xxxSEL should also be written to 0 to ensure correct operation.

Also note that writing this register clears POSCSR:CKRDY. The register must not be re-written until CKRDY goes high.

ATMEL o

32058K  AVR32-01/12



13.6.3 Clock Mask

Name: CPU/HSB/PBA/PBBMASK

Access Type: Read/Write
31 30 29 27 26 25 24

‘ MASK[31:24] ‘
23 22 21 19 18 17 16

‘ MASK][23:16] ‘
15 14 13 11 10 9 8

‘ MASK[15:8] ‘
7 6 5 3 2 1 0

‘ MASK][7:0] ‘

* MASK: Clock Mask
If bit n is cleared, the clock for module n is stopped. If bit n is set, the clock for module n is enabled according to the current
power mode. The number of implemented bits in each mask register, as well as which module clock is controlled by each bit, is

shown in Table 13-5.

Table 13-5. Maskable module clocks in AT32UC3A.

Bit CPUMASK HSBMASK PBAMASK PBBMASK
0 - FLASHC INTC HMATRIX
1 OCD PBA bridge GPIO USBB
2 - PBB bridge PDCA FLASHC
3 - USBB PM/RTC/EIC MACB
4 - MACB ADC SMC
5 - PDCA SPI0 SDRAMC
6 - EBI SPI1 -

7 - - TWI -
8 - - USARTO -
9 - - USART1 -

10 - - USART2 -

11 - - USART3 -

12 - - PWM -

13 - - SSC -

32058K  AVR32-01/12

ATMEL

70



Table 13-5. Maskable module clocks in AT32UC3A.

Bit CPUMASK HSBMASK PBAMASK PBBMASK

14 - - TC -

15 - - ABDAC -

16 SYSTIMER - - -
(COMPARE/COUNT
REGISTERS CLK)

31: - - - -

17

32058K  AVR32-01/12

ATMEL

71



13.6.4 PLL Control

Name: PLLO,1

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ RESERVED PLLCOUNT ‘
23 22 21 20 19 18 17 16

‘ RESERVED PLLMUL ‘
15 14 13 12 11 10 9 8

‘ RESERVED PLLDIV ‘
7 6 5 4 3 2 1 0

‘ - - - PLLOPT PLLOSC PLLEN ‘

* RESERVED: Reserved bitfields

Reserved for internal use. Always write to 0.

PLLCOUNT: PLL Count

Specifies the number of slow clock cycles before ISR:LOCKn will be set after PLLn has been written, or after PLLn has been

automatically re-enabled after exiting a sleep mode.

* PLLMUL: PLL Multiply Factor
PLLDIV: PLL Division Factor

These bitfields determine the ratio of the PLL output frequency (voltage controlled oscillator frequency f,,o) to the source

oscillator frequency:

fyco = (PLLMUL+1)/(PLLDIV) * fogc if PLLDIV > 0.

fyco = 2(PLLMUL*1) * fogc if PLLDIV = 0.

If PLLOPT[1] field is set to O:

forL = fuco.
If PLLOPTI[1] field is set to 1:

for =fuco/ 2

Note that the MUL field cannot be equal to 0 or 1, or the behavior of the PLL will be undefined.

* PLLOPT: PLL Option

Select the operating range for the PLL.
PLLOPT[O]: Select the VCO frequency range.
PLLOPT[1]: Enable the extra output divider.

PLLOPT[2]: Disable the Wide-Bandwidth mode (Wide-Bandwidth mode allows a faster startup time and out-of-lock time).

32058K  AVR32-01/12

ATMEL

72



Table 13-6. PLLOPT Fields Description in AT32UC3A

Description

PLLOPTIO]: VCO frequency

0 160MHz<f,,,<240MHz

1 80MHz<f,,,<180MHz
PLLOPT[1]: Output divider

0 forL = fico

1 for = fico/2
PLLOPTI[2]

0 Wide Bandwidth Mode enabled

Wide Bandwidth Mode disabled

* PLLOSC: PLL Oscillator Select

0: Oscillator 0 is the source for the PLL.
1: Oscillator 1 is the source for the PLL.

* PLLEN: PLL Enable
0: PLL is disabled.
1: PLL is enabled.

32058K  AVR32-01/12

ATMEL

73



13.6.5 PM Oscillator 0/1 Control

Register name OSCCTRLO,1
Register access Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | i | i | i | - | STARTUP |
7 6 5 4 3 2 1 0
. - r - r - r - [ - | MODE |

* MODE: Oscillator Mode
Choose between crystal, or external clock
0: External clock connected on XIN, XOUT can be used as an I/O (no crystal)
1 to 3: reserved
4: Crystal is connected to XIN/XOUT - Oscillator is used with gain GO ( XIN from 0.4 MHz to 0.9 MHz ).
5: Crystal is connected to XIN/XOUT - Oscillator is used with gain G1 ( XIN from 0.9 MHz to 3.0 MHz ).
(
(

6: Crystal is connected to XIN/XOUT - Oscillator is used with gain G2 ( XIN from 3.0 MHz to 8.0 MHz ).
7: Crystal is connected to XIN/XOUT - Oscillator is used with gain G3 ( XIN from 8.0 Mhz).

* STARTUP: Oscillator Startup Time
Select startup time for the oscillator.

Table 13-7.  Startup time for oscillators 0 and 1

Number of RC oscillator Approximative Equivalent time

STARTUP clock cycle (RCOsc =115 kHz)

0 0 0

1 64 560 us

2 128 1.1 ms

3 2048 18 ms

4 4096 36 ms

5 8192 71 ms

6 16384 142 ms

7 Reserved Reserved

ATMEL z

32058K  AVR32-01/12



13.6.6 PM 32 KHz Oscillator Control Register

Register name OSCCTRL32

Register access Read/Write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| i | i | i | i | i | STARTUP |
15 14 13 12 11 10 9 8

. - r - r - r - [ - | MODE |
7 6 5 4 3 2 1 0

| - | : | : | : | - | : : OSC32EN |

Note: This register is only reset by Power-On Reset

* OSC32EN: Enable the 32 KHz oscillator
0: 32 KHz Oscillator is disabled
1: 32 KHz Oscillator is enabled

* MODE: Oscillator Mode

Choose between crystal, or external clock

0: External clock connected on XIN32, XOUT32 can be used as a I/O (no crystal)
1: Crystal is connected to XIN32/XOUT32
2to 7: reserved

* STARTUP: Oscillator Startup Time
Select startup time for 32 KHz oscillator

Table 13-8.  Startup time for 32 KHz oscillator

Number of RC oscillator Approximative Equivalent time

STARTUP clock cycle (RCOsc =115 kHz)

0 0 0

1 128 1.1ms

2 8192 72.3 ms

3 16384 143 ms

4 65536 570 ms

5 131072 11s

6 262144 23s

7 524288 46s

ATMEL s

32058K  AVR32-01/12



13.6.7

Name:

Access Type:

IER/IDR/IMR/ISR/ICR
IER/IDR/ICR: Write-only

Interrupt Enable/Disable/Mask/Status/Clear

IMR/ISR: Read-only

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

- - - - [ - | - | - | soooer |

15 14 13 12 11 10 9 8

- | - ‘ - ‘ - | - ‘ - | OSC32RDY ‘ OSC1RDY ‘

7 6 5 4 3 2 1 0
OSCORDY | MSKRDY ‘ CKRDY ‘ - | - ‘ - | LOCK1 ‘ LOCKO ‘

32058K  AVR32-01/12

BODDET: Brown out detection
Set to 1 when 0 to 1 transition on POSCSR:BODDET bit is detected: BOD has detected that power supply is going below
BOD reference value.

OSC32RDY: 32 KHz oscillator Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC32RDY bit is detected: The 32 KHz oscillator is stable and ready to be
used as clock source.

OSC1RDY: Oscillator 1 Ready
Set to 1 when 0 to 1 transition on the POSCSR:OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used as
clock source.

OSCORDY: Oscillator 0 Ready
Set to 1 when 0O to 1 transition on the POSCSR:OSC1RDY bit is detected: Oscillator 1 is stable and ready to be used as
clock source.

MSKRDY: Mask Ready
Set to 1 when 0 to 1 transition on the POSCSR:MSKRDY bit is detected: Clocks are now masked according to the
(CPU/HSB/PBA/PBB)_MASK registers.

CKRDY: Clock Ready
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
Note: Writing ICR:CKRDY to 1 has no effect.

LOCK1: PLL1 locked
Set to 1 when 0 to 1 transition on the POSCSR:LOCK1 bit is detected: PLL 1 is locked and ready to be selected as clock
source.

LOCKO: PLLO locked
Set to 1 when 0 to 1 transition on the POSCSR:LOCKO bit is detected: PLL O is locked and ready to be selected as clock
source.

ATMEL 7



The effect of writing or reading the bits listed above depends on which register is being accessed:

* IER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
* IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
* ISR (Read-only)
0: An interrupt event has not occurred or has been previously cleared
1: An interrupt event has not occurred
ICR (Write-only)
0: No effect
1: Clear corresponding event

ATMEL m

32058K  AVR32-01/12



13.6.8 Power and Oscillators Status

Name: POSCSR
Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
- - - r - r - r - 1 - | - | soooer |
15 14 13 12 11 10 9 8
- T - | - | - T - T < T oscumov | osciror |
7 6 5 4 3 2 1 0
‘ OSCORDY ‘ MSKRDY | CKRDY ‘ - ‘ - ‘ - | LOCK1 ‘ LOCKO ‘

* BODDET: Brown out detection
0: No BOD event
1: BOD has detected that power supply is going below BOD reference value.
* OSC32RDY: 32 KHz oscillator Ready
0: The 32 KHz oscillator is not enabled or not ready.
1: The 32 KHz oscillator is stable and ready to be used as clock source.
* OSC1RDY: OSC1 ready
0: Oscillator 1 not enabled or not ready.
1: Oscillator 1 is stable and ready to be used as clock source.
* OSCORDY: OSCO ready
0: Oscillator 0 not enabled or not ready.
1: Oscillator 0 is stable and ready to be used as clock source.
* MSKRDY: Mask ready
0: Mask register has been changed, masking in progress.
1: Clock are masked according to xxx_MASK
* CKRDY:
0: The CKSEL register has been written, and the new clock setting is not yet effective.
1: The synchronous clocks have frequencies as indicated in the CKSEL register.
* LOCK1: PLL 1 locked
0:PLL 1 is unlocked
1:PLL 1 is locked, and ready to be selected as clock source.
* LOCKO: PLL 0 locked
0: PLL 0 is unlocked
1: PLL O is locked, and ready to be selected as clock source.

ATMEL 7

32058K  AVR32-01/12



13.6.9 Generic Clock Control

Name: GCCTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

- - r - r - r - ;- ;- ;- |
23 22 21 20 19 18 17 16

- ! - r - r - r - ;- ;- ]} - |
15 14 13 12 11 10 9 8

‘ DIV[7:0] ‘
7 6 5 4 3 2 1 0

| ] ] ] DIVEN - CEN PLLSEL OSCSEL |

There is one GCCTRL register per generic clock in the design.

* DIV: Division Factor
* DIVEN: Divide Enable
0: The generic clock equals the undivided source clock.
1: The generic clock equals the source clock divided by 2*(DIV+1).
* CEN: Clock Enable
0: Clock is stopped.
1: Clock is running.
PLLSEL: PLL Select
0: Oscillator is source for the generic clock.
1: PLL is source for the generic clock.
* OSCSEL: Oscillator Select
0: Oscillator (or PLL) O is source for the generic clock.
1: Oscillator (or PLL) 1 is source for the generic clock.

ATMEL 7

32058K  AVR32-01/12



13.6.10 Reset Cause

Name: RCAUSE
Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
‘ - ‘ - | - ‘ - ‘ - ‘ - | JTAGHARD ‘ OCDRST ‘
7 6 5 4 3 2 1 0
‘ CPUERR ‘ - | - ‘ JTAG ‘ WDT ‘ EXT | BOD ‘ POR ‘

* POR Power-on Reset
The CPU was reset due to the supply voltage being lower than the power-on threshold level.
¢ BOD: Brown-out Reset
The CPU was reset due to the supply voltage being lower than the brown-out threshold level.
* EXT: External Reset Pin
The CPU was reset due to the RESET pin being asserted.
* WDT: Watchdog Reset
The CPU was reset because of a watchdog timeout.
¢ JTAG: JTAG reset
The CPU was reset by setting the bit RC_CPU in the JTAG reset register.
* CPUERR: CPU Error
The CPU was reset because it had detected an illegal access.
* OCDRST: OCD Reset
The CPU was reset because the RES strobe in the OCD Development Control register has been written to one.
* JTAGHARD: JTAG Hard Reset
The chip was reset by setting the bit RC_OCD in the JTAG reset register or by using the JTAG HALT instruction.

ATMEL s

32058K  AVR32-01/12



13.6.11

BOD Level register
Register name

Register access

BOD Control

BOD
Read/Write

31 30 29 28 27 26 25 24
‘ KEY

23 22 21 20 19 18 17 16
I B B T T -

15 14 13 12 1 10 9 8
T T T T

7 6 5 4 3 2 1 0
‘ - ‘ HYST | LEVEL

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.
* FCD: BOD Fuse calibration done

Set to 1 when CTRL, HYST and LEVEL fields has been updated by the Flash fuses after power-on reset or Flash fuses update
If one, the CTRL, HYST and LEVEL values will not be updated again by Flash fuses
Can be cleared to allow subsequent overwriting of the value by Flash fuses

e CTRL: BOD Control
0: BOD is off

1: BOD is enabled and can reset the chip

2: BOD is enabled and but cannot reset the chip. Only interrupt will be sent to interrupt controller, if enabled in the IMR register.

3: BOD is off

* HYST: BOD Hysteresis
0: No hysteresis
1: Hysteresis On

LEVEL: BOD Level

This field sets the triggering threshold of the BOD. See Electrical Characteristics for actual voltage levels.

Note that any change to the LEVEL field of the BOD register should be done with the BOD deactivated to avoid spurious reset

or interrupt.

32058K  AVR32-01/12

ATMEL

81



13.6.12 RC Oscillator Calibration

Register name RCCR

Register access Read/Write
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - r - r - r - r -’ - [ - Feo |
15 14 13 12 11 10 9 8

. - r - r - r - r - @ - | cALB |
7 6 5 4 3 2 1 0

‘ CALIB ‘

* CALIB: Calibration Value
Calibration Value for the RC oscillator.

* FCD: Flash Calibration Done
Set to 1 when CTRL, HYST, and LEVEL fields have been updated by the Flash fuses after power-on reset, or after Flash fuses
are reprogrammed. The CTRL, HYST and LEVEL values will not be updated again by the Flash fuses until a new power-on
reset or the FCD field is written to zero.

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then 0xAA, for a write operation to have an effect.

ATMEL 5

32058K  AVR32-01/12



13.6.13 Bandgap Calibration

Register name BGCR

Register access Read/Write
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - - r - r - r - @ - [ - | ro |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

- r - - 1 - [ - | caLE |

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then OxAA, for a write operation to have an effect.

* CALIB: Calibration value
Calibration value for Bandgap. See Electrical Characteristics for voltage values.

* FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are
reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

ATMEL 5

32058K  AVR32-01/12



13.6.14 PM Voltage Regulator Calibration Register

Register name VREGCR

Register access Read/Write
31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

. - - r - r - r - @ - [ - | ro |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

- r - - 1 - [ - | caLE |

* KEY: Register Write protection
This field must be written twice, first with key value 0x55, then 0xAA, for a write operation to have an effect.

* CALIB: Calibration value
Calibration value for Voltage Regulator. See Electrical Characteristics for voltage values.

* FCD: Flash Calibration Done
Set to 1 when the CALIB field has been updated by the Flash fuses after power-on reset or when the Flash fuses are
reprogrammed. The CALIB field will not be updated again by the Flash fuses until a new power-on reset or the FCD field is
written to zero.

ATMEL o

32058K  AVR32-01/12



13.6.15 General Purpose Low-power register 0/1
Register name GPLPO,1
Register access Read/Write
31 30 29 28 27 26 25 24
‘ GPLP
23 22 21 20 19 18 17 16
‘ GPLP
15 14 13 12 11 10 9 8
‘ GPLP ‘
7 6 5 4 3 2 1 0
‘ GPLP ‘

These registers are general purpose 32-bit registers that are reset only by power-on-reset. Any other reset will keep the

content of these registers untouched.

32058K  AVR32-01/12

ATMEL

85



14. Real Time Counter (RTC)

14.1 Features

14.2 Description

32058K  AVR32-01/12

Rev: 2.3.0.1

* 32-bit real-time counter with 16-bit prescaler
* Clocked from RC oscillator or 32 KHz oscillator
* High resolution: Max count frequency 16 KHz
* Long delays
— Max timeout 272 years
* Extremely low power consumption
* Available in all sleep modes except Static
* Interrupt on wrap

The Real Time Counter (RTC) enables periodic interrupts at long intervals, or accurate mea-
surement of real-time sequences. The RTC is fed from a 16-bit prescaler, which is clocked from
the RC oscillator or the 32 KHz oscillator. Any tapping of the prescaler can be selected as clock
source for the RTC, enabling both high resolution and long timeouts. The prescaler cannot be
written directly, but can be cleared by the user.

The RTC can generate an interrupt when the counter wraps around the value stored in the top
register, producing accurate periodic interrupts.

ATMEL L



AT32UC3A

14.3 Block Diagram

Figure 14-1. Real Time Counter module block diagram

RTC _CTRL RTC _TOP
| | | l
CLK32 EN PCLR
\ Y
—32 kHz
16-bit Prescaler —»{ 32-bit counter —» TOPI| —IRQ—»
—RC OSC t
RTC_ VAL

14.4 Product Dependencies
1441 Power Management

The RTC is continuously clocked, and remains operating in all sleep modes except Static. Inter-
rupts are not available in DeepStop mode.

14.4.2 Interrupt

The RTC interrupt line is connected to one of the internal sources of the interrupt controller.
Using the RTC interrupt requires the interrupt controller to be programmed first.

14.4.3 Debug Operation

The RTC prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

14.4.4 Clocks

The RTC can use the internal RC oscillator as clock source. This oscillator is always enabled
whenever these modules are active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fz¢).

The RTC can also use the 32 KHz crystal oscillator as clock source. This oscillator must be
enabled before use. Please refer to the Power Manager chapter for details.

14.5 Functional Description
145.1 RTC operation
14511 Source clock

The RTC is enabled by writing the EN bit in the CTRL register to 1. The 16-bit prescaler will then
increment on the selected clock. The prescaler cannot be read or written, but it can be reset by

writing the PCLR strobe.
A|IIIEI. 87
. ________________[G]

32058K  AVR32-01/12



The CLK32 bit selects either the RC oscillator or the 32 KHz oscillator as clock source for the
prescaler.

The PSEL bitfield selects the prescaler tapping, selecting the source clock for the RTC:
frre = 2 PSEL N * (fo or 32 KHz)
145.1.2 Counter operation
When enabled, the RTC will increment until it reaches TOP, and then wrap to 0x0. The status bit

TOPI in ISR is set when this occurs. From 0x0 the counter will count TOP+1 cycles of the source
clock before it wraps back to 0x0.

The RTC count value can be read from or written to the register VAL. Due to synchronization,
continuous reading of the VAL with the lowest prescaler setting will skip every other value.

14.5.1.3 RTC Interrupt

Writing the TOPI bit in IER enables the RTC interrupt, while writing the corresponding bit in IDR
disables the RTC interrupt. IMR can be read to see whether or not the interrupt is enabled. If
enabled, an interrupt will be generated if the TOPI flag in ISR is set. The flag can be cleared by
writing TOPI in ICR to one.

The RTC interrupt can wake the CPU from all sleep modes except DeepStop and Static mode.

14514 RTC wakeup

The RTC can also wake up the CPU directly without triggering an interrupt when the TOPI flag in
ISR is set. In this case, the CPU will continue executing from the instruction following the sleep
instruction.

This direct RTC wakeup is enabled by writing the WAKE_EN bit in the CTRL register to one.
When the CPU wakes from sleep, the WAKE_EN bit must be written to zero to clear the internal
wake signal to the sleep controller, otherwise a new sleep instruction will have no effect.

The RTC wakeup is available in all sleep modes except Static mode. The RTC wakeup can be
configured independently of the RTC interrupt.

14515  Busy bit

Due to the crossing of clock domains, the RTC uses a few clock cycles to propagate the values
stored in CTRL, TOP, and VAL to the RTC. The BUSY bit in CTRL indicates that a register write
is still going on and all writes to TOP, CTRL, and VAL will be discarded until BUSY goes low
again.

ATMEL s

32058K  AVR32-01/12



14.6 User Interface

Offset Register Register Name Access Reset
0x00 RTC Control CTRL Read/Write 0x0
0x04 RTC Value VAL Read/Write 0x0
0x08 RTC Top TOP Read/Write 0x0
0x10 RTC Interrupt Enable IER Write-only 0x0
0x14 RTC Interrupt Disable IDR Write-only 0x0
0x18 RTC Interrupt Mask IMR Read-only 0x0
0x1C RTC Interrupt Status ISR Read-only 0x0
0x20 RTC Interrupt Clear ICR Write-only 0x0

14.6.1 RTC Control

Name: CTRL

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - r - - 1°r - {r - rr - [ - [ - |
23 22 21 20 19 18 17 16

e | CHKEN
15 14 13 12 11 10 9 8

| - | - | - | - | PSEL |
7 6 5 4 3 2 1 0

| - | - | - | BUSY | Clka2 WAKE_EN PCLR EN |

CLKEN: Clock enable

0: The clock is disabled

1: The clockis enabled
* PSEL: Prescale Select

Selects prescaler bit PSEL as source clock for the RTC.
BUSY: RTC busy

0: The RTC accepts writes to TOP, VAL, and CTRL.

1: The RTC is busy and will discard writes to TOP, VAL, and CTRL.
CLK32: 32 KHz oscillator select

0: The RTC uses the RC oscillator as clock source

1: The RTC uses the 32 KHz oscillator as clock source

ATMEL 5

32058K  AVR32-01/12



* WAKE_EN: Wakeup enable
0: The RTC does not wake up the CPU from sleep modes
1: The RTC wakes up the CPU from sleep modes.
* PCLR: Prescaler Clear
Writing 1 to this strobe clears the prescaler.
* EN: Enable
0: The RTC is disabled
1: The RTC is enabled

ATMEL s

32058K  AVR32-01/12



14.6.2 RTC Value

Name: VAL

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ VAL[31:24] ‘
23 22 21 20 19 18 17 16

| VAL[23:16] |
15 14 13 12 11 10 9 8

| VAL[15:8] |
7 6 5 4 3 2 1 0

| VAL[7:0] |

* VAL: RTC Value
This value is incremented on every rising edge of the source clock.

ATMEL o

32058K  AVR32-01/12



14.6.3 RTC Top

Name: TOP

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ TOP[31:24] ‘
23 22 21 20 19 18 17 16

| TOP[23:16] |
15 14 13 12 11 10 9 8

| TOP[15:8] |
7 6 5 4 3 2 1 0

| TOP[7:0] |

* TOP: RTC Top Value
VAL wraps at this value.

ATMEL 0

32058K  AVR32-01/12



14.6.4 RTC Interrupt Enable/Disable/Mask/Status/Clear
Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [ - [ - |
23 22 21 20 19 18 17 16
- - r-r - r - ;- [ - [ - |
15 14 13 12 11 10 9 8
- r - r - r - +r - - [ - 7 - |
7 6 5 4 3 2 1 0
I S N B A DT I N -

¢ TOPI: Top Interrupt
VAL has wrapped at its top value.

The effect of writing or reading this bit depends on which register is being accessed:

* |ER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
* IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
* ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
* ICR (Write-only)
0: No effect
1: Clear interrupt even

ATMEL o

32058K  AVR32-01/12



15. Watchdog Timer (WDT)

Rev: 2.3.0.1
15.1 Features

* Watchdog Timer counter with 16-bit prescaler
* Clocked from RC oscillator

15.2 Description

The Watchdog Timer (WDT) has a prescaler generating a timeout period. This prescaler is
clocked from the RC oscillator. The watchdog timer must be periodically reset by software within
the timeout period, otherwise, the device is reset and starts executing from the boot vector. This
allows the device to recover from a condition that has caused the system to be unstable.

15.3 Block Diagram

Figure 15-1. Watchdog Timer module block diagram

WDT_CLR
° 32-bit Watchdog
RCOSC - Prescaler —— P Detector Watchdog Reset—p»
EN——— WDT_CTRL

15.4 Product Dependencies
154.1 Power Management

When the WDT is enabled, the WDT remains clocked in all sleep modes, and it is not possible to
enter Static mode.

15.4.2 Debug Operation

The WDT prescaler is frozen during debug operation, unless the OCD system keeps peripherals
running in debug operation.

15.4.3 Clocks
The WDT can use the internal RC oscillator as clock source. This oscillator is always enabled

whenever these modules are active. Please refer to the Electrical Characteristics chapter for the
characteristic frequency of this oscillator (fzc).

ATMEL o

32058K  AVR32-01/12



15.5 Functional Description

32058K  AVR32-01/12

The WDT is enabled by writing the EN bit in the CTRL register to one. This also enables the RC
clock for the prescaler. The PSEL bitfield in the same register selects the watchdog timeout
period:

Twor = 2(PSELA) fre

The next timeout period will begin as soon as the watchdog reset has occured and count down
during the reset sequence. Care must be taken when selecting the PSEL value so that the time-
out period is greater than the startup time of the chip, otherwise a watchdog reset can reset the
chip before any code has been run.

To avoid accidental disabling of the watchdog, the CTRL register must be written twice, first with
the KEY field set to 0x55, then OxAA without changing the other bitfields. Failure to do so will
cause the write operation to be ignored, and CTRL does not change value.

The CLR register must be written with any value with regular intervals shorter than the watchdog
timeout period. Otherwise, the device will receive a soft reset, and the code will start executing
from the boot vector.

When the WDT is enabled, it is not possible to enter Static mode. Attempting to do so will result
in entering Shutdown mode, leaving the WDT operational.

ATMEL o



15.6 User Interface

Offset Register Register Name Access Reset
0x00 WDT Control CTRL Read/Write 0x0
0x04 WDT Clear CLR Write-only 0x0

ATMEL o

32058K  AVR32-01/12



15.6.1 WDT Control

Name: CTRL
Access Type: Read/Write
31 30 29 28 27 26 25 24
‘ KEY[7:0] ‘
23 22 21 20 19 18 17 16
T T T T T T T ]
15 14 13 12 11 10 9 8
. - - [ - PSEL |
7 6 5 4 3 2 1 0
S S S N SN NI
. KEY

This bitfield must be written twice, first with key value 0x55, then OxAA, for a write operation to be effective. This bitfield always
reads as zero.

* PSEL: Prescale Select

Prescaler bit PSEL is used as watchdog timeout period.
* EN: WDT Enable

0: WDT is disabled.

1: WDT is enabled.

ATMEL o

32058K  AVR32-01/12



15.6.2 WDT Clear
Name: CLR
Access Type: Write-only

When the watchdog timer is enabled, this register must be periodically written, with any value, within the watchdog timeout
period, to prevent a watchdog reset.

ATMEL s

32058K  AVR32-01/12



16. Interrupt Controller (INTC)

16.1 Description

Rev: 1.0.1.1

The INTC collects interrupt requests from the peripherals, prioritizes them, and delivers an inter-
rupt request and an autovector to the CPU. The AVR32 architecture supports 4 priority levels for
regular, maskable interrupts, and a Non-Maskable Interrupt (NMI).

The INTC supports up to 64 groups of interrupts. Each group can have up to 32 interrupt request
lines, these lines are connected to the peripherals. Each group has an Interrupt Priority Register
(IPR) and an Interrupt Request Register (IRR). The IPRs are used to assign a priority level and
an autovector to each group, and the IRRs are used to identify the active interrupt request within
each group. If a group has only one interrupt request line, an active interrupt group uniquely
identifies the active interrupt request line, and the corresponding IRR is not needed. The INTC
also provides one Interrupt Cause Register (ICR) per priority level. These registers identify the
group that has a pending interrupt of the corresponding priority level. If several groups have an
pending interrupt of the same level, the group with the lowest number takes priority.

16.2 Block Diagram

16.3 Operation

32058K  AVR32-01/12

Figure 16-1 on page 99 gives an overview of the INTC. The grey boxes represent registers that
can be accessed via the Peripheral Bus (PB). The interrupt requests from the peripherals
(IREQn) and the NMI are input on the left side of the figure. Signals to and from the CPU are on
the right side of the figure.

Figure 16-1. Overview of the Interrupt Controller

Interrupt Controller CPU
NMIREQ
B Masks | | SREG
d masks
v 1[3-0]M
GM
I - OR GrDReqN= ValRegN >
[ 1| ®Rrn INTLEVEL _
Request - .
IREQ63 > i 3
GrpReq1 o maSkmg ValReq1 - g{
IREQ34 T »| OR o )
IREQ33 T E —|—> =
IREQ32 T IPR1 AUTOVECTOR
IREQ31 - ValReq0 _
GrgRegO. Lt
IREQ2 . » OR
IREQ1 T _|’>
IREQO T - IPRO INT_level, offset *
[ ]|rro L]
IRR registers IPR registers ICR registers

All of the incoming interrupt requests (IREQs) are sampled into the corresponding Interrupt
Request Register (IRR). The IRRs must be accessed to identify which IREQ within a group that
is active. If several IREQs within the same group is active, the interrupt service routine must pri-

ATMEL o



oritize between them. All of the input lines in each group are logically-ORed together to form the
GrpRegN lines, indicating if there is a pending interrupt in the corresponding group.

The Request Masking hardware maps each of the GrpReq lines to a priority level from INTO to
INT3 by associating each group with the INTLEVEL field in the corresponding IPR register. The
GrpReq inputs are then masked by the I0M, 1M, 12M, I3M and GM mask bits from the CPU sta-
tus register. Any interrupt group that has a pending interrupt of a priority level that is not masked
by the CPU status register, gets its corresponding ValReq line asserted.

The Prioritizer hardware uses the ValReq lines and the INTLEVEL field in the IPRs to select the
pending interrupt of the highest priority. If a NMI interrupt is pending, it automatically gets high-
est priority of any pending interrupt. If several interrupt groups of the highest pending interrupt
level have pending interrupts, the interrupt group with the highest number is selected.

Interrupt level (INTLEVEL) and handler autovector offset (AUTOVECTOR) of the selected inter-
rupt are transmitted to the CPU for interrupt handling and context switching. The CPU doesn't
need to know which interrupt is requesting handling, but only the level and the offset of the han-
dler address. The IRR registers contain the interrupt request lines of the groups and can be read
via PB for checking which interrupts of the group are actually active.

Masking of the interrupt requests is done based on five interrupt mask bits of the CPU status
register, namely interrupt level 3 mask (I3M) to interrupt level 0 mask (IOM), and Global interrupt
mask (GM). An interrupt request is masked if either the Global interrupt mask or the correspond-
ing interrupt level mask bit is set.

16.3.1 Non maskable interrupts
A NMI request has priority over all other interrupt requests. NMI has a dedicated exception vec-
tor address defined by the AVR32 architecture, so AUTOVECTOR is undefined when
INTLEVEL indicates that an NMI is pending.

16.3.2 CPU response

When the CPU receives an interrupt request it checks if any other exceptions are pending. If no
exceptions of higher priority are pending, interrupt handling is initiated. When initiating interrupt
handling, the corresponding interrupt mask bit is set automatically for this and lower levels in sta-
tus register. E.g, if interrupt on level 3 is approved for handling the interrupt mask bits 13M, 12M,
1M, and I0M are set in status register. If interrupt on level 1 is approved the masking bits 11M,
and I0M are set in status register. The handler offset is calculated from AUTOVECTOR and
EVBA and a change-of-flow to this address is performed.

Setting of the interrupt mask bits prevents the interrupts from the same and lower levels to be
passed trough the interrupt controller. Setting of the same level mask bit prevents also multiple
request of the same interrupt to happen.

It is the responsibility of the handler software to clear the interrupt request that caused the inter-
rupt before returning from the interrupt handler. If the conditions that caused the interrupt are not
cleared, the interrupt request remains active.

16.3.3 Clearing an interrupt request
Clearing of the interrupt request is done by writing to registers in the corresponding peripheral
module, which then clears the corresponding NMIREQ/IREQ signal.

The recommended way of clearing an interrupt request is a store operation to the controlling
peripheral register, followed by a dummy load operation from the same register. This causes a

AImEl@ 100

32058K  AVR32-01/12



pipeline stall, which prevents the interrupt from accidentally re-triggering in case the handler is
exited and the interrupt mask is cleared before the interrupt request is cleared.

16.4 User Interface

This chapter lists the INTC registers are accessible through the PB bus. The registers are used
to control the behaviour and read the status of the INTC.

16.4.1 Memory Map
The following table shows the address map of the INTC registers, relative to the base address of

the INTC.

Table 16-1. INTC address map
Offset Register Name Access Reset Value
0 Interrupt Priority Register O IPRO Read/Write 0x0000_0000
4 Interrupt Priority Register 1 IPR1 Read/Write 0x0000_0000
252 Interrupt Priority Register 63 IPR63 Read/Write 0x0000_0000
256 Interrupt Request Register 0 IRRO Read-only N/A
260 Interrupt Request Register 1 IRR1 Read-only N/A
508 Interrupt Request Register 63 IRR63 Read-only N/A
512 Interrupt Cause Register 3 ICR3 Read-only N/A
516 Interrupt Cause Register 2 ICR2 Read-only N/A
520 Interrupt Cause Register 1 ICR1 Read-only N/A
524 Interrupt Cause Register 0 ICRO Read-only N/A

16.4.2 Interrupt Request Map
The mapping of interrupt requests from peripherals to INTREQs is presented in the Peripherals
Section.

AImEl@ 101

32058K  AVR32-01/12



16.4.3 Interrupt Request Registers

Register Name: IRRO...IRR63
Access Type: Read-only
31 30 29 28 27 26 25 24

[RR(32°x+31) | IRR(32'x+30) | IRR(32°x+29) | IRR(32'x+28) | IRR(32'x+27) | IRR(32'x+26) | IRR(32'x+25) | IRR(32'x+24) |

23 22 21 20 19 18 17 16
[TRR(3Z'x+23) | IRR(32'x+22) | IRR(32'x+21) | IRR(32'x+20) | IRR(32"x+19) | IRR(32°x+18) | IRR(32'x+17) | IRR(32'x*16) |

15 14 13 12 11 10 9 8
[TRR(3Zx+15) | IRR(32'x+14) | IRR(32'x+13) | IRR(32'x+12) | IRR(32'x+11) | IRR(32'x+10) | IRR(32'x+9) | IRR(32'x*8) |

7 6 5 4 3 2 1 0
[TRR(G2%+7) | IRR(32'x+6) | IRR(32'x+5) | IRR(32'x*4) | IRR(32'x+3) | IRR(32'x2) | IRR@B2'x+1) | IRR(3Z'x+0) |

* IRR: Interrupt Request line

0 = No interrupt request is pending on this input request input.

1 = An interrupt request is pending on this input request input.

The are 64 IRRs, one for each group. Each IRR has 32 bits, one for each possible interrupt request, for a total of 2048 pos-

sible input lines. The IRRs are read by the software interrupt handler in order to determine which interrupt request is
pending. The IRRs are sampled continuously, and are read-only.

AImEl@ 102

32058K  AVR32-01/12



16.4.4 Interrupt Priority Registers

Register Name: IPRO...IPR63

Access Type: Read/Write
31 30 29 28 27 26 25 24

| INTLEVEL[1:0] - . [ - - - . |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - [ - AUTOVECTOR[13:8] |
7 6 5 4 3 2 1 0

AUTOVECTOR][7:0]

* INTLEVEL: Interrupt level associated with this group

Indicates the EVBA-relative offset of the interrupt handler of the corresponding group:

INTLEVEL[1:0] Priority
0 0 INTO
0 1 INT1
1 0 INT2
1 1 INT3

 AUTOVECTOR: Autovector address for this group
Handler offset is used to give the address of the interrupt handler. The least significant bit should be written to zero to give

halfword alignment

32058K  AVR32-01/12

ATMEL

103



16.4.5 Interrupt Cause Registers

Register Name: ICRO...ICR3

Access Type: Read-only
31 30 29 28 27 26 25 24

I - I i I i I - I - I i I i I - |
23 22 21 20 19 18 17 16

I i I i I i I - I i I i I i I - |
15 14 13 12 11 10 9 8

I i I i I i I - I i I i I i I - |
7 6 5 4 3 2 1 0

| - | - | CAUSE |

» CAUSE: Interrupt group causing interrupt of priority n

ICRn identifies the group with the highest priority that has a pending interrupt of level n. If no interrupts of level n are pend-
ing, or the priority level is masked, the value of ICRn is UNDEFINED.

AImEl@ 104

32058K  AVR32-01/12



17. External Interrupts Controller (EIC)

17.1 Features

17.2 Description

32058K  AVR32-01/12

Rev: 2.3.0.2

* Dedicated interrupt requests for each interrupt

* Individually maskable interrupts

* Interrupt on rising or falling edge

* Interrupt on high or low level

* Asynchronous interrupts for sleep modes without clock
* Filtering of interrupt lines

* Keypad scan support

* Maskable NMI interrupt

The External Interrupt Module allows pins to be configured as external interrupts. Each pin has
its own interrupt request and can be individually masked. Each pin can generate an interrupt on
rising or falling edge, or high or low level. Every line has a configurable filter too remove spikes
on the interrupt lines. Every interrupt pin can also be configured to be asynchronous to wake up
the part from sleep modes where the clock has been disabled.

A Non-Maskable Interrupt (NMI) is also supported. This has the same properties as the other
external interrupts, but is connected to the NMI request of the CPU, enabling it to interrupt any
other interrupt mode.

The External Interrupt Module has support for keypad scanning for keypads laid out in rows and
columns. Columns are driven by a separate set of scanning outputs, while rows are sensed by
the external interrupt lines. The pressed key will trigger an interrupt, which can be identified
through the user registers of the module.

The External Interrupt Module can wake up the part from sleep modes without triggering an
interrupt. In this mode, code execution starts from the instruction following the sleep instruction.

AImEl@ 105



17.3 Block Diagram

Figure 17-1. External Interrupt Module block diagram

EXTINTnN
NMI

17.4

1741

17.4.2

17.4.3

g

I/O Lines

Interrupt

—IRQn»

EIM_LEVEL
EIM_MODE
EIM_EDGE
EIM_EN Polarity _ | Asynchronus | EM ICR EIM_IER
EIM_DIS control detector T EIM_IDR
Wake
Enabl EIM_LEVEL = INTN >  Mask
able EIM_FILTER EIM_MODE detect
EIM_EDGE
EIM_CTRL . Edge/Level EIM_ISR EIM_IMR
- Filter o
Detector
—RC clk
Prescaler |—» Shifter SCAN
LPRESC— JN PIN

Product Dependencies

[ v

EIM_SCAN

EIM_WAKE————»

The External Interrupt and keypad scan pins are multiplexed with PIO lines. To act as external
interrupts, these pins must be configured as inputs pins by the PIO controller. It is also possible
to trigger the interrupt by driving these pins from registers in the P1O controller, or another
peripheral output connected to the same pin.

Power Management

All interrupts are available in every sleep mode. However, in sleep modes where the clock is
stopped, asynchronous interrupts must be selected.

The external interrupt lines are connected to internal sources of the interrupt controller. Using
the external interrutps requires the interrupt controller to be programmed first.

Using the Non-Maskable Interrupt does not require the interrupt controller to be programmed.

32058K  AVR32-01/12

ATMEL

106



17.5 Functional Description
17.5.1 External Interrupts

To enable an external interrupt EXTINTn must be written to 1 in register EN. Similarly, writing
EXTINTnN to 1 in register DIS disables the interrupt. The status of each Interrupt line can be
observed in the CTRL register.

Each external interrupt pin EXTINTn can be configured to produce an interrupt on rising or fall-
ing edge, or high or low level. External interrupts are configured by the MODE, EDGE, and
LEVEL registers. Each interrupt n has a bit INTn in each of these registers.

Similarly, each interrupt has a corresponding bit in each of the interrupt control and status regis-
ters. Writing 1 to the INTn strobe in IER enables the external interrupt on pin EXTINTn, while
writing 1 to INTn in IDR disables the external interrupt. IMR can be read to check which inter-
rupts are enabled. When the interrupt triggers, the corresponding bit in ISR will be set. The flag
remains set until the corresponding strobe bit in ICR is written to 1.

Writing INTn in MODE to 0 enables edge triggered interrupts, while writing the bit to 1 enables
level triggered interrupts.

If EXTINTnN is configured as an edge triggered interrupt, writing INTn in EDGE to 0 will trigger the
interrupt on falling edge, while writing the bit to 1 will trigger the interrupt on rising edge.

If EXTINTN is configured as a level triggered interrupt, writing INTn in LEVEL to O will trigger the
interrupt on low level, while writing the bit to 1 will trigger the interrupt on high level.

To remove spikes that are longer than the clock period in the current mode each external inter-
rupt contains a filter that can be enabled by writing 1 to INTn to FILTER.

Each interrupt line can be made asynchronous by writing 1 to INTn in the ASYNC register. This
will route the interrupt signal through the asynchronous path of the module. All edge interrupts
will be interpreted as level interrupts and the filter is disabled.

17511 Synchronization of external interrupts

The pin value of the EXTINTn pins is normally synchronized to the CPU clock, so spikes shorter
than a CPU clock cycle are not guaranteed to produce an interrupt. In Stop mode, spikes shorter
than a 32 KHz clock cycle are not guaranteed to produce an interrupt.

In Static mode, only unsynchronized interrupts remain active, and any short spike on this inter-
rupt will wake up the device.

17.5.1.2 Wakeup

The External interrupts can be used to wake up the part from sleep modes. The wakeup can be
interpreted in two ways. If the corresponding bit in IMR is set, then the execution starts at the
interrupt handler for this interrupt. If the bit in IMR is not set, then the execution starts from the
next instruction after the sleep instruction.

17.5.2 Non-Maskable Interrupt

The NMI supports the same features as the external interrupts, and is accessed through the
same registers. The description in Section 17.5.1 should be followed, accessing the NMI bit
instead of the INTn bits.

AImEl@ 107

32058K  AVR32-01/12



The NMI is non-maskable within the CPU in the sense that it can interrupt any other execution
mode. Still, as for the other external interrupts, the actual NMI input line can be enabled and dis-
abled by accessing the registers in the External Interrupt Module. These interrupts are not
enabled by default, allowing the proper interrupt vectors to be set up by the CPU before the
interrupts are enabled.

17.5.3 Keypad scan support

32058K  AVR32-01/12

The External Interrupt Module also includes support for keypad scanning. The keypad scan fea-
ture is compatible with keypads organized as rows and columns, where a row is shorted against
a column when a key is pressed.

The rows should be connected to the external interrupt pins with pullups enabled in the GPIO
module. These external interrupts should be enabled as low level or falling edge interrupts. The
columns should be connected to the available scan pins. The GPIO must be configured to let the
required scan pins be controlled by the EIC module. Unused external interrupt or scan pins can
be left controlled by the GPIO or other peripherals.

The Keypad Scan function is enabled by writing :EN to 1, which starts the keypad scan counter.
The SCAN outputs are tristated, except SCAN[0], which is driven to zero. After 2(SCAN:PRESC+1)
RC clock cycles this pattern is left shifted, so that SCAN[1] is driven to zero while the other out-
puts are tristated. This sequence repeats infinitely, wrapping from the most significant SCAN pin
to SCAN[O].

When a key is pressed, the pulled-up row is driven to zero by the column, and an external inter-
rupt triggers. The scanning stops, and the software can then identify the key pressed by the
interrupt status register and the SCAN:PINS value.

The scanning stops whenever there is an active interrupt request from the EIC to the CPU.
When the CPU clears the interrupt flags, scanning resumes.

AImEl@ 108



17.6 User Interface

Offset Register Register Name Access Reset
0x00 EIC Interrupt Enable IER Write-only 0x0
0x04 EIC Interrupt Disable IDR Write-only 0x0
0x08 EIC Interrupt Mask IMR Read-only 0x0
0x0C EIC Interrupt Status ISR Read-only 0x0
0x10 EIC Interrupt Clear ICR Write-only 0x0
0x14 External Interrupt Mode MODE Read/Write 0x0
0x18 External Interrupt Edge EDGE Read/Write 0x0
0x1C External Interrupt Level LEVEL Read/Write 0x0
0x20 External Interrupt Filter FILTER Read/Write 0x0
0x24 External Interrupt Test TEST Read/Write 0x0
0x28 External Interrupt Asynchronous ASYNC Read/Write 0x0
0x2C External Interrupt Scan SCAN Read/Write 0x0
0x30 External Interrupt Enable EN Write-only 0x0
0x34 External Interrupt Disable DIS Write-only 0x0
0x38 External Interrupt Control CTRL Read/Write 0x0

AImEl@ 109

32058K  AVR32-01/12



17.6.1 EIC Interrupt Enable/Disable/Mask/Status/Clear
Name: IER/IDR/IMR/ISR/ICR
Access Type: IER/IDR/ICR: Write-only

IMR/ISR: Read-only

31 30 29 28 27 26 25 24
- r - r - r - r - ;- [ - [ - |
23 22 21 20 19 18 17 16
- r - r - r - r - ;- [ - [ - |
15 14 13 12 11 10 9 8
- - - e e e e e
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

The effect of writing or reading the bits listed above depends on which register is being accessed:

* |ER (Write-only)
0: No effect
1: Enable Interrupt
* IDR (Write-only)
0: No effect
1: Disable Interrupt
IMR (Read-only)
0: Interrupt is disabled
1: Interrupt is enabled
ISR (Read-only)
0: An interrupt event has occurred
1: An interrupt even has not occurred
* ICR (Write-only)
0: No effect
1: Clear interrupt event

AImEl@ 110

32058K  AVR32-01/12



17.6.2 External Interrupt Mode/Edge/Level/Filter/Async

Name: MODE/EDGE/LEVEL/FILTER/ASYNC

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - 1 - [ - |
23 22 21 20 19 18 17 16

. - - r - r - r - ;- - ;- [} - |
15 14 13 12 11 10 9 8

A e e i
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INT5 ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

The bit interpretation is register specific:

* MODE
0: Interrupt is edge triggered
1: Interrupt is level triggered
EDGE
0: Interrupt triggers on falling edge
1: Interrupt triggers on rising edge

0: Interrupt triggers on low level
1: Interrupt triggers on high level

0: Interrupt is not filtered
1: Interrupt is filtered

0: Interrupt is synchronized to the clock
1: Interrupt is asynchronous

AImEl@ 111

32058K  AVR32-01/12



17.6.3 External Interrupt Test

Name: TEST
Access Type: Read/Write
31 30 29 28 27 26 25 24
‘ TEST_EN ‘ - ‘ - - ‘ - - - - ‘
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
T T - ST
7 6 5 4 3 2 1 0
‘ INT7 ‘ INT6 ‘ INT5 INT4 ‘ INT3 INT2 INT1 INTO ‘
* NMI
If TEST_EN is 1, the value of this bit will be the value to the interrupt detector and the value on the pad will be ignored.
* INTn
If TEST_EN is 1, the value of this bit will be the value to the interrupt detector and the value on the pad will be ignored.
« TEST_EN

0: External interrupt test is disabled
1: External interrupt test is enabled

32058K  AVR32-01/12

ATMEL

112



17.6.4 External Interrupt Scan

Name: SCAN
Access Type: Read/Write
31 30 29 28 27 26 25 24
- - r - - [ - | PINI20) |
23 22 21 20 19 18 17 16
I S I B R - ]
15 14 13 12 11 10 9 8
‘ ] ‘ ] ‘ ] \ PRESC[4:0] ‘
7 6 5 4 3 2 1 0
I I N - - - o
* EN

0: Keypad scanning is disabled
1: Keypad scanning is enabled
* PRESC
Prescale select for the keypad scan rate:
Scan rate = 2(SCAN:PRESC+1) Tre
The RC clock period can be found in the Electrical Characteristics section.
* PIN
The index of the currently active scan pin. Writing to this bitfield has no effect.

AImEl@ 113

32058K  AVR32-01/12



17.6.5 External Interrupt Enable/Disable/Control
Name: EN/DIS/CTRL

Access Type: EN/DIS: Write-only
CTRL: Read-only

31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | I | | |
15 14 13 12 11 10 9 8

I S S R N AR O B TR
7 6 5 4 3 2 1 0

‘ INT7 ‘ INT6 ‘ INTS ‘ INT4 ‘ INT3 ‘ INT2 ‘ INT1 ‘ INTO ‘

The bit interpretation is register specific:

* EN

0: No effect

1: Interrupt is enabled
* DIS

0: No effect

1: Interrupt is disabled
e CTRL

0: Interrupt is disabled

1: Interrupt is enabled

AImEl@ 114

32058K  AVR32-01/12



18. Flash Controller (FLASHC)
Rev: 2.0.0.2

18.1 Features

* Controls flash block with dual read ports allowing staggered reads.

* Supports 0 and 1 wait state bus access.

* Allows interleaved burst reads for systems with one wait state, outputting one 32-bit word per
clock cycle.

* 32-bit HSB interface for reads from flash array and writes to page buffer.

* 32-bit PB interface for issuing commands to and configuration of the controller.

* 16 lock bits, each protecting a region consisting of (total number of pages in the flash block /
16) pages.

* Regions can be individually protected or unprotected.

* Additional protection of the Boot Loader pages.

* Supports reads and writes of general-purpose NVM bits.

* Supports reads and writes of additional NVM pages.

* Supports device protection through a security bit.

» Dedicated command for chip-erase, first erasing all on-chip volatile memories before erasing
flash and clearing security bit.

* Interface to Power Manager for power-down of flash-blocks in sleep mode.

18.2 Description
The flash controller (FLASHC) interfaces a flash block with the 32-bit internal HSB bus. Perfor-
mance for uncached systems with high clock-frequency and one wait state is increased by
placing words with sequential addresses in alternating flash subblocks. Having one read inter-
face per subblock allows them to be read in parallel. While data from one flash subblock is
being output on the bus, the sequential address is being read from the other flash subblock
and will be ready in the next clock cycle.

The controller also manages the programming, erasing, locking and unlocking sequences with
dedicated commands.

18.3 Product dependencies

18.3.1 Power management
The HFLASHC has two bus clocks connected: One High speed bus clock
(CLK_FLASHC_HSB) and one Peripheral bus clock (CLK_FLASHC_PB). These clocks are
generated by the Power manager. Both clocks are turned on by default, but the user has to
ensure that CLK_FLASHC_HSB is not turned off before reading the flash or writing the page-
buffer and that CLK_FLASHC_PB is not turned of before accessing the FLASHC configuration
and control registers.

18.3.2 Interrupt
The FLASHC interrupt lines are connected to internal sources of the interrupt controller. Using
FLASHC interrutps requires the interrupt controller to be programmed first.

AImEl@ 115

32058K  AVR32-01/12



18.4 Functional description

18.4.1

18.4.2

18.4.3

18.4.4

Bus interfaces

The FLASHC has two bus interfaces, one High-Speed Bus (HSB) interface for reads from the
flash array and writes to the page buffer, and one Peripheral Bus (PB) interface for writing
commands and control to and reading status from the controller.

Memory organization

User page

Read operations

32058K  AVR32-01/12

To maximize performance for high clock-frequency systems, FLASHC interfaces to a flash
block with two read ports. The flash block has several parameters, given by the design of the
flash block. Refer to the “Memories” chapter for the device-specific values of the parameters.

* p pages (FLASH_P)

» w words in each page and in the page buffer (FLASH_W)

* pw words in total (FLASH_PW)

« f general-purpose fuse bits (FLASH_F)

* 1 security fuse bit

* 1 User Page

The User page is an additional page, outside the regular flash array, that can be used to store
various data, like calibration data and serial numbers. This page is not erased by regular chip
erase. The User page can only be written and erased by proprietary commands. Read
accesses to the User page is performed just as any other read access to the flash. The
address map of the User page is given in Figure 18-1.

The FLASHC provides two different read modes:

» 0 wait state (Ows) for clock frequencies < (access time of the flash plus the bus delay)
» 1 wait state (1ws) for clock frequencies < (access time of the flash plus the bus delay)/2

Higher clock frequencies that would require more wait states are not supported by the flash
controller.

The programmer can select the wait states required by writing to the FWS field in the flash
control register (FCR). It is the responsibility of the programmer to select a number of wait
states compatible with the clock frequency and timing characteristics of the flash block.

In Ows mode, only one of the two flash read ports is accessed. The other flash read port is idle.
In 1ws mode, both flash read ports are active. One read port reading the addressed word, and
the other reading the next sequential word.

If the clock frequency allows, the user should use Ows mode, because this gives the lowest
power consumption for low-frequency systems as only one flash read port is read. Using 1ws
mode has a power/performance ratio approaching Ows mode as the clock frequency
approaches twice the max frequency of Ows mode. Using two flash read ports use twice the
power, but also give twice the performance.

AImEl@ 116



The flash controller supports flash blocks with up to 2*21 word addresses, as displayed in Fig-
ure 18-1. Reading the memory space between address pw and 2*21-1 returns an undefined
result. The User page is permanently mapped to word address 2721.

Table 18-1. User row addresses

Memory type Start address, byte sized Size
Main array 0 pw words = 4pw bytes
User 2723 = 8388608 128 words = 512 bytes

Figure 18-1. Memory map for the Flash memories

All addresses are word addresses

27021+
21§§ Hggrs?)gge
©
O
n
S
c
o)
pw -y
>
£
©
i)
©
o
c
n
©
(TH
0
Flash with

extra page

18.4.5 Quick Page Read
A dedicated command, Quick Page Read (QPR), is provided to read all words in an
addressed page. All bits in all words in this page are AND’ed together, returning a 1-bit result.
This result is placed in the Quick Page Read Result (QPRR) bit in Flash Status Register
(FSR). The QPR command is useful to check that a page is in an erased state. The QPR
instruction is much faster than performing the erased-page check using a regular software
subroutine.

18.4.6 Write page buffer operations
The internal memory area reserved for the embedded flash can also be written through a
write-only page buffer. The page buffer is addressed only by the address bits required to
address w words (since the page buffer is word addressable) and thus wrap around within the
internal memory area address space and appear to be repeated within it.

When writing to the page buffer, the PAGEN field in the FCMD register is updated with the
page number corresponding to page address of the latest word written into the page buffer.

AImEl@ 117

32058K  AVR32-01/12



The page buffer is also used for writes to the User page.

Write operations can be prevented by programming the Memory Protection Unit of the CPU.
Writing 8-bit and 16-bit data to the page buffer is not allowed and may lead to unpredictable
data corruption.

Page buffer write operations are performed with 4 wait states.

Writing to the page buffer can only change page buffer bits from one to zero, ie writing
Oxaaaaaaaa to a page buffer location that has the value 0x00000000, will not change the page
buffer value. The only way to change a bit from zero to one, is to reset the entire page buffer
with the Clear Page Buffer command.

The page buffer is not automatically reset after a page write. The programmer should do this
manually by issuing the Clear Page Buffer flash command. This can be done after a page
write, or before the page buffer is loaded with data to be stored to the flash page.

Example: Writing a word into word address 130 of a flash with 128 words in the page buffer.
PAGEN will be updated with the value 1, and the word will be written into word 2 in the page
buffer.

18.4.7 Writing words to a page that is not completely erased
This can be used for EEPROM emulation, i.e. writes with granularity of one word instead of an
entire page. Only words that are in an completely erased state (OXFFFFFFFF) can be
changed. The procedure is as follows:

1. Clear page buffer

2. Write to the page buffer the result of the logical bitwise AND operation between the
contents of the flash page and the new data to write. Only words that were in an
erased state can be changed from the original page.

3. Write Page.

18.5 Flash commands

The FLASHC offers a command set to manage programming of the flash memory, locking and
unlocking of regions, and full flash erasing. See chapter 18.8.3 for a complete list of
commands.

To run a command, the field CMD of the Flash Command Register (FCMD) has to be written
with the command number. As soon as the FCMD register is written, the FRDY flag is auto-
matically cleared. Once the current command is complete, the FRDY flag is automatically set.
If an interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is activated. All flash commands except for Quick Page Read (QPR) will generate an
interrupt request upon completion if FRDY is set.

After a command has been written to FCMD, the programming algorithm should wait until the
command has been executed before attempting to read instructions or data from the flash or
writing to the page buffer, as the flash will be busy. The waiting can be performed either by
polling the Flash Status Register (FSR) or by waiting for the flash ready interrupt. The com-
mand written to FCMD is initiated on the first clock cycle where the HSB bus interface in
FLASHC is IDLE. The user must make sure that the access pattern to the FLASHC HSB inter-
face contains an IDLE cycle so that the command is allowed to start. Make sure that no bus
masters such as DMA controllers are performing endless burst transfers from the flash. Also,
make sure that the CPU does not perform endless burst transfers from flash. This is done by

AImEl@ 118

32058K  AVR32-01/12



letting the CPU enter sleep mode after writing to FCMD, or by polling FSR for command com-
pletion. This polling will result in an access pattern with IDLE HSB cycles.

All the commands are protected by the same keyword, which has to be written in the eight
highest bits of the FCMD register. Writing FCMD with data that does not contain the correct
key and/or with an invalid command has no effect on the flash memory; however, the PROGE
flag is set in the Flash Status Register (FSR). This flag is automatically cleared by a read
access to the FSR register.

Writing a command to FCMD while another command is being executed has no effect on the
flash memory; however, the PROGE flag is set in the Flash Status Register (FSR). This flag is
automatically cleared by a read access to the FSR register.

If the current command writes or erases a page in a locked region, or a page protected by the
BOOTPROT fuses, the command has no effect on the flash memory; however, the LOCKE
flag is set in the FSR register. This flag is automatically cleared by a read access to the FSR
register.

18.5.1 Write/erase page operation
Flash technology requires that an erase must be done before programming. The entire flash
can be erased by an Erase All command. Alternatively, pages can be individually erased by
the Erase Page command.

The User page can be written and erased using the mechanisms described in this chapter.

After programming, the page can be locked to prevent miscellaneous write or erase
sequences. Locking is performed on a per-region basis, so locking a region locks all pages
inside the region. Additional protection is provided for the lowermost address space of the
flash. This address space is allocated for the Boot Loader, and is protected both by the lock
bit(s) corresponding to this address space, and the BOOTPROT][2:0] fuses.

Data to be written are stored in an internal buffer called page buffer. The page buffer contains
w words. The page buffer wraps around within the internal memory area address space and
appears to be repeated by the number of pages in it. Writing of 8-bit and 16-bit data to the
page buffer is not allowed and may lead to unpredictable data corruption.

Data must be written to the page buffer before the programming command is written to the
Flash Command Register FCMD. The sequence is as follows:

* Reset the page buffer with the Clear Page Buffer command.
« Fill the page buffer with the desired contents, using only 32-bit access.

* Programming starts as soon as the programming key and the programming command are
written to the Flash Command Register. The PAGEN field in the Flash Command Register
(FCMD) must contain the address of the page to write. PAGEN is automatically updated
when writing to the page buffer, but can also be written to directly. The FRDY bit in the
Flash Status Register (FSR) is automatically cleared when the page write operation starts.

* When programming is completed, the bit FRDY in the Flash Status Register (FSR) is set. If
an interrupt was enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is set.

Two errors can be detected in the FSR register after a programming sequence:

* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

AImEl@ 119

32058K  AVR32-01/12



* Lock Error: The page to be programmed belongs to a locked region. A command must be
executed to unlock the corresponding region before programming can start.

18.5.2 Erase All operation
The entire memory is erased if the Erase All command (EA) is written to the Flash Command
Register (FCMD). Erase All erases all bits in the flash array. The User page is not erased. All
flash memory locations, the general-purpose fuse bits, and the security bit are erased (reset to
OxFF) after an Erase All.

The EA command also ensures that all volatile memories, such as register file and RAMs, are
erased before the security bit is erased.

Erase All operation is allowed only if no regions are locked, and the BOOTPROT fuses are
programmed with a region size of 0. Thus, if at least one region is locked, the bit LOCKE in
FSR is set and the command is cancelled. If the bit LOCKE has been written to 1 in FCR, the
interrupt line rises.

When the command is complete, the bit FRDY bit in the Flash Status Register (FSR) is set. If
an interrupt has been enabled by setting the bit FRDY in FCR, the interrupt line of the flash
controller is set. Two errors can be detected in the FSR register after issuing the command:

* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

 Lock Error: At least one lock region to be erased is protected, or BOOTPROT is different
from 0. The erase command has been refused and no page has been erased. A Clear Lock
Bit command must be executed previously to unlock the corresponding lock regions.

18.5.3 Region lock bits
The flash block has p pages, and these pages are grouped into 16 lock regions, each region
containing p/16 pages. Each region has a dedicated lock bit preventing writing and erasing
pages in the region. After production, the device may have some regions locked. These locked
regions are reserved for a boot or default application. Locked regions can be unlocked to be
erased and then programmed with another application or other data.

To lock or unlock a region, the commands Lock Region Containing Page (LP) and Unlock
Region Containing Page (UP) are provided. Writing one of these commands, together with the
number of the page whose region should be locked/unlocked, performs the desired operation.

One error can be detected in the FSR register after issuing the command:
* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
lock bits can also be set/cleared using the commands for writing/erasing general-purpose fuse
bits, see chapter 18.6. The general-purpose bit being in an erased (1) state means that the
region is unlocked.

The lowermost pages in the Flash can additionally be protected by the BOOTPROT fuses, see
Section 18.6.

18.6 General-purpose fuse bits

Each flash block has a number of general-purpose fuse bits that the application programmer
can use freely. The fuse bits can be written and erased using dedicated commands, and read

AImEl@ 120

32058K  AVR32-01/12



through a dedicated Peripheral Bus address. Some of the general-purpose fuse bits are
reserved for special purposes, and should not be used for other functions.:

Table 18-2.  General-purpose fuses with special functions

General-

Purpose fuse

number Name Usage

15:0 LOCK Region lock bits.

External Privileged Fetch Lock. Used to prevent the CPU from
fetching instructions from external memories when in privileged
mode. This bit can only be changed when the security bit is
cleared. The address range corresponding to external
memories is device-specific, and not known to the flash
controller. This fuse bit is simply routed out of the CPU or bus
system, the flash controller does not treat this fuse in any

special way, except that it can not be altered when the security
16 EPFL bit is set.

If the security bit is set, only an external JTAG Chip Erase can
clear EPFL. No internal commands can alter EPFL if the
security bit is set.

When the fuse is erased (i.e. "1"), the CPU can execute
instructions fetched from external memories. When the fuse is
programmed (i.e. "0"), instructions can not be executed from
external memories.

Used to select one of four different bootloader sizes. Pages
included in the bootloader area can not be erased or
programmed except by a JTAG chip erase. BOOTPROT can
only be changed when the security bit is cleared.

19:17 BOOTPROT If the security bit is set, only an external JTAG Chip Erase can
clear BOOTPROT, and thereby allow the pages protected by
BOOTPROT to be programmed. No internal commands can
alter BOOTPROT or the pages protected by BOOTPROT if the
security bit is set.

The BOOTPROT fuses protects the following address space for the Boot Loader:

Table 18-3. Boot Loader area specified by BOOTPROT

Pages protected by Size of protected

BOOTPROT BOOTPROT memory

7 None 0

6 0-1 1kByte

5 0-3 2kByte

4 0-7 4kByte

3 0-15 8kByte

2 0-31 16kByte

1 0-63 32kByte

0 0-127 64kByte

To erase or write a general-purpose fuse bit, the commands Write General-Purpose Fuse Bit
(WGPB) and Erase General-Purpose Fuse Bit (EGPB) are provided. Writing one of these

AImEl@ 121

32058K  AVR32-01/12



18.7 Security bit

32058K  AVR32-01/12

commands, together with the number of the fuse to write/erase, performs the desired
operation.

An entire General-Purpose Fuse byte can be written at a time by using the Program GP Fuse
Byte (PGPFB) instruction. A PGPFB to GP fuse byte 2 is not allowed if the flash is locked by
the security bit. The PFB command is issued with a parameter in the PAGEN field:

* PAGEN]2:0] - byte to write

* PAGEN[10:3] - Fuse value to write
All General-Purpose fuses can be erased by the Erase All General-Purpose fuses (EAGP)
command. An EAGP command is not allowed if the flash is locked by the security bit.
Two errors can be detected in the FSR register after issuing these commands:

* Programming Error: A bad keyword and/or an invalid command have been written in the

FCMD register.

* Lock Error: A write or erase of any of the special-function fuse bits in Table 18-3 was
attempted while the flash is locked by the security bit.

The lock bits are implemented using the lowest 16 general-purpose fuse bits. This means that
the 16 lowest general-purpose fuse bits can also be written/erased using the commands for
locking/unlocking regions, see Section 18.5.3.

The security bit allows the entire chip to be locked from external JTAG or other debug access
for code security. The security bit can be written by a dedicated command, Set Security Bit
(SSB). Once set, the only way to clear the security bit is through the JTAG Chip Erase
command.

Once the Security bit is set, the following Flash controller commands will be unavailable and
return a lock error if attempted:

» Write General-Purpose Fuse Bit (WGPB) to BOOTPROT or EPFL fuses
» Erase General-Purpose Fuse Bit (EGPB) to BOOTPROT or EPFL fuses
* Program General-Purpose Fuse Byte (PGPFB) of fuse byte 2
* Erase All General-Purpose Fuses (EAGPF)

One error can be detected in the FSR register after issuing the command:

* Programming Error: A bad keyword and/or an invalid command have been written in the
FCMD register.

AImEl@ 122



18.8 User interface

18.8.1 Address map

The following addresses are used by the FLASHC. All offsets are relative to the base address
allocated to the flash controller.

Table 18-4.  Flash controller register mapping

Reset
Offset Register Name Access state
0x0 Flash Control Register FCR R/W 0
0x4 Flash Command Register FCMD R/W 0
0x8 Flash Status Register FSR R/W 0(*
Oxc Flash General Purpose Fuse Register Hi | FGPFRHI R NA (*)
0x10 Flash General Purpose Fuse Register Lo | FGPFRLO NA (¥)

(*) The value of the Lock bits is dependent of their programmed state. All other bits in FSR are
0. All bits in FGPFR and FCFR are dependent on the programmed state of the fuses they map
to. Any bits in these registers not mapped to a fuse read O.

AImEl@ 123

32058K  AVR32-01/12



18.8.2 Flash Control Register (FCR)

Offset: 0x0
31 30 29 28 27 26 25 24
- - - rr - - - [ - [ - |
23 22 21 20 19 18 17 16
- - - r-r - r - r - @ - [ - |
15 14 13 12 11 10 9 8
- - - r - - @ - | - | sas |
7 6 5 4 3 2 1 0
‘ - ‘ FWS ‘ - ‘ - ‘PROGE ‘ LOCKE ‘ - ‘ FRDY ‘

FRDY: Flash Ready Interrupt Enable

0: Flash Ready does not generate an interrupt.

1: Flash Ready generates an interrupt.

LOCKE: Lock Error Interrupt Enable

0: Lock Error does not generate an interrupt.

1: Lock Error generates an interrupt.

PROGE: Programming Error Interrupt Enable

0: Programming Error does not generate an interrupt.
1: Programming Error generates an interrupt.

FWS: Flash Wait State

0: The flash is read with 0 wait states.

1: The flash is read with 1 wait state.

SASD: Sense Amplifier Sample Disable

0: The sense amplifiers in the flash are in sampling mode.

1: The sense amplifiers in the flash are permanently enabled. Consumes more power.

AImEl@ 124

32058K  AVR32-01/12



18.8.3 Flash Command Register (FCMD)
Offset: 0x4

The FCMD can not be written if the flash is in the process of performing a flash command.
Doing so will cause the FCR write to be ignored, and the PROGE bit to be set.

31 30 29 28 27 26 25 24

‘ KEY ‘
23 22 21 20 19 18 17 16

| PAGEN [15:8] |
15 14 13 12 11 10 9 8

‘ PAGEN [7:0] ‘
7 6 5 4 3 2 1 0

| ] ] CMD |

CMD: Command

This field defines the flash command. Issuing any unused command will cause the Program-
ming Error flag to be set, and the corresponding interrupt to be requested if the PROGE bit in

FCR is set.

Table 18-5.  Set of commands
Command Value Mnemonic
No operation 0 NOP
Write Page 1 WP
Erase Page 2 EP
Clear Page Buffer 3 CPB
Lock region containing given Page 4 LP
Unlock region containing given Page 5 UpP
Erase All 6 EA
Write General-Purpose Fuse Bit 7 WGPB
Erase General-Purpose Fuse Bit 8 EGPB
Set Security Bit 9 SSB
Program GP Fuse Byte 10 PGPFB
Erase All GPFuses 11 EAGPF
Quick Page Read 12 QPR
Write User Page 13 WUP
Erase User Page 14 EUP
Quick Page Read User Page 15 QPRUP

AImEl@ 125

32058K  AVR32-01/12



32058K  AVR32-01/12

PAGEN: Page number

The PAGEN field is used to address a page or fuse bit for certain operations. In order to sim-
plify programming, the PAGEN field is automatically updated every time the page buffer is
written to. For every page buffer write, the PAGEN field is updated with the page number of
the address being written to. Hardware automatically masks writes to the PAGEN field so that
only bits representing valid page numbers can be written, all other bits in PAGEN are always
0. As an example, in a flash with 1024 pages (page 0 - page 1023), bits 15:10 will always be 0.

Table 18-6. Semantic of PAGEN field in different commands

Command PAGEN description

No operation Not used

Write Page The number of the page to write

Clear Page Buffer Not used

Lock region containing given Page Page number whose region should be locked
Unlock region containing given Page Page number whose region should be unlocked
Erase All Not used

Write General-Purpose Fuse Bit GPFUSE #

Erase General-Purpose Fuse Bit GPFUSE #

Set Security Bit Not used

Program GP Fuse Byte WriteData[7:0], ByteAddress[2:0]

Erase All GP Fuses Not used

Quick Page Read Page number

Write User Page Not used

Erase User Page Not used

Quick Page Read User Page Not used

KEY: Write protection key

This field should be written with the value 0xA5 to enable the command defined by the bits of
the register. If the field is written with a different value, the write is not performed and no action
is started.

This field always reads as 0.

AImEl@ 126



18.8.4 Flash Status Register (FSR)
Offset: 0x08
31 30 29 28 27 26 25 24
| Lockis | Lockia | Lockizs | Lockiz | Locki1 | Lockio |  Locke LOCK8 |
23 22 21 20 19 18 17 16
| Lock7 | Locke | Locks | Locksa | Locks | Locke | Locki LocKo |
15 14 13 12 11 10 9 8
| Fsz . - - - 7 - | |
7 6 5 4 3 2 1 0
| - - QPRR | SECURITY | PROGE | LOCKE | - | FROY |

FRDY: Flash Ready Status

0: The flash controller is busy and the application must wait before running a new command.
1: The flash controller is ready to run a new command.

LOCKE: Lock Error Status

Automatically cleared when FSR is read.

0: No programming of at least one locked lock region has happened since the last read of
FSR.

1: Programming of at least one locked lock region has happened since the last read of FSR.
PROGE: Programming Error Status
Automatically cleared when FSR is read.

0: No invalid commands and no bad keywords were written in the Flash Command Register
FCMD.

1: An invalid command and/or a bad keyword was/were written in the Flash Command Regis-
ter FCMD.

SECURITY: Security Bit Status

0: The security bit is inactive.

1: The security bit is active.

QPRR: Quick Page Read Result

0: The result is zero, i.e. the page is not erased.
1: The result is one, i.e. the page is erased.

Automatically cleared when FSR is read.

AImEl@ 127

32058K  AVR32-01/12



FSZ: Flash Size

The size of the flash. Not all device families will provide all flash sizes indicated in the table.

Table 18-7.  Flash size
FSz Flash Size
0 32 KByte

1 64 kByte
128 kByte
256 kByte
384 kByte
512 kByte
768 kByte
1024 kByte

N | o oA W N

LOCKx: Lock Region x Lock Status
0: The corresponding lock region is not locked.

1: The corresponding lock region is locked.

AImEl@ 128

32058K  AVR32-01/12



18.8.5 Flash General Purpose Fuse Register High (FGPFRHI)

Offset: 0x0C

31 30 29 28 27 26 25 24

| oPre3 | oPre2 | oPFet | oPFe0 | GPFs9 | GPFss | GPF57 | GPFse |
23 22 21 20 19 18 17 16

| oprss | oPrs4a | eprss | oprs2 | oPrst | ePrso | oprao | cPRas |
15 14 13 12 1 10 9 8

| opra7 | cePFas | GPras | opras | cePFas | ePraz | oPFa1 | cPFa0 |
7 6 5 4 3 2 1 0

| oPras | oPrss | opra7 | oPrss | GPFas | ePFa4 | GPFa3 | cPFa2 |

This register is only used in systems with more than 32 GP fuses.
GPFxx: General Purpose Fuse xx
0: The fuse has a written/programmed state.

1: The fuse has an erased state.

AImEl@ 129

32058K  AVR32-01/12



18.8.6 Flash General Purpose Fuse Register Low (FGPFRLO)

Offset: 0x10

31 30 29 28 27 26 25 24

| oPrat | oPrs0 | opr2o | oprs | ePrzr | ePF2s | GPF2s | cPFa4 |
23 22 21 20 19 18 17 16

| opr2s | ePr22 | epr2t | opr2o | ePrte | epris | opF1i7 | cPFe |
15 14 13 12 1 10 9 8

| opris | P4 | epF13s | opri2 | P11 | ePFi0 | oProo | cPros |
7 6 5 4 3 2 1 0

| epror | cPros | opros | ePro4 | ePpros | ePro2 | GPFo1 | GPFoo |

GPFxx: General Purpose Fuse xx
0: The fuse has a written/programmed state.

1: The fuse has an erased state.

AImEl@ 130

32058K  AVR32-01/12



s A\ [ 32U C3A

AI“IE'.@ 131

32058K  AVR32-01/12



19. HSB Bus Matrix (HMATRIX)

Rev: 2.3.0.1

19.1 Features
* User Interface on peripheral bus
* Configurable Number of Masters (Up to sixteen)
* Configurable Number of Slaves (Up to sixteen)
* One Decoder for Each Master
* Three Different Memory Mappings for Each Master (Internal and External boot, Remap)
* One Remap Function for Each Master
* Programmable Arbitration for Each Slave
— Round-Robin
— Fixed Priority
* Programmable Default Master for Each Slave
— No Default Master
— Last Accessed Default Master
— Fixed Default Master
* One Cycle Latency for the First Access of a Burst
» Zero Cycle Latency for Default Master
* One Special Function Register for Each Slave (Not dedicated)

19.2 Description

The Bus Matrix implements a multi-layer bus structure, that enables parallel access paths
between multiple High Speed Bus (HSB) masters and slaves in a system, thus increasing the
overall bandwidth. The Bus Matrix interconnects up to 16 HSB Masters to up to 16 HSB Slaves.
The normal latency to connect a master to a slave is one cycle except for the default master of
the accessed slave which is connected directly (zero cycle latency). The Bus Matrix provides 16
Special Function Registers (SFR) that allow the Bus Matrix to support application specific
features.

19.3 Memory Mapping
The Bus Matrix provides one decoder for every HSB Master Interface. The decoder offers each
HSB Master several memory mappings. In fact, depending on the product, each memory area
may be assigned to several slaves. Booting at the same address while using different HSB
slaves (i.e. external RAM, internal ROM or internal Flash, etc.) becomes possible.

The Bus Matrix user interface provides Master Remap Control Register (MRCR) that performs
remap action for every master independently.

19.4 Special Bus Granting Mechanism
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism reduces latency at first access of a burst or single
transfer. This bus granting mechanism sets a different default master for every slave.

At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.

AImEl@ 132

32058K  AVR32-01/12



19.4.1 No Default Master

At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master suits low-power mode.

19.4.2 Last Access Master

At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.

19.4.3 Fixed Default Master

19.5 Arbitration

At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master does not change unless the user
modifies it by a software action (field FIXED_DEFMSTR of the related SCFG).

To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that set a default master for each slave. The
Slave Configuration Register contains two fields: DEFMSTR_TYPE and FIXED_DEFMSTR. The
2-bit DEFMSTR_TYPE field selects the default master type (no default, last access master, fixed
default master), whereas the 4-bit FIXED_DEFMSTR field selects a fixed default master pro-
vided that DEFMSTR_TYPE is set to fixed default master. Please refer to the Bus Matrix user
interface description.

The Bus Matrix provides an arbitration mechanism that reduces latency when conflict cases
occur, i.e. when two or more masters try to access the same slave at the same time. One arbiter
per HSB slave is provided, thus arbitrating each slave differently.

The Bus Matrix provides the user with the possibility of choosing between 2 arbitration types for
each slave:

1. Round-Robin Arbitration (default)

2. Fixed Priority Arbitration
This choice is made via the field ARBT of the Slave Configuration Registers (SCFG).

Each algorithm may be complemented by selecting a default master configuration for each
slave.

When a re-arbitration must be done, specific conditions apply. See Section 19.5.1 "Arbitration
Rules” on page 133.

1951 Arbitration Rules

32058K  AVR32-01/12

Each arbiter has the ability to arbitrate between two or more different master requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitra-
tion may only take place during the following cycles:

1. Idle Cycles: When a slave is not connected to any master or is connected to a master
which is not currently accessing it.
2. Single Cycles: When a slave is currently doing a single access.

3. End of Burst Cycles: When the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is man-
aged differently for undefined length burst. See Section “19.5.1.1” on page 134.

AImEl@ 133



4. Slot Cycle Limit: When the slot cycle counter has reached the limit value indicating that
the current master access is too long and must be broken. See Section “19.5.1.2” on
page 134.

19511 Undefined Length Burst Arbitration

In order to avoid long slave handling during undefined length bursts (INCR), the Bus Matrix pro-
vides specific logic in order to re-arbitrate before the end of the INCR transfer. A predicted end
of burst is used as a defined length burst transfer and can be selected from among the following
five possibilities:
1. Infinite: No predicted end of burst is generated and therefore INCR burst transfer will
never be broken.
2. One beat bursts: Predicted end of burst is generated at each single transfer inside the
INCP transfer.
3. Four beat bursts: Predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.
4. Eight beat bursts: Predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
5. Sixteen beat bursts: Predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
This selection can be done through the field ULBT of the Master Configuration Registers
(MCFG).

19.5.1.2 Slot Cycle Limit Arbitration

The Bus Matrix contains specific logic to break long accesses, such as very long bursts on a
very slow slave (e.g., an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (SCFG) and decreased at each clock cycle. When the counter reaches
zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or word
transfer.

19.5.2 Round-Robin Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master requests arise at the same time,
the master with the lowest number is first serviced, then the others are serviced in a round-robin
manner.

There are three round-robin algorithms implemented:

* Round-Robin arbitration without default master

* Round-Robin arbitration with last default master

* Round-Robin arbitration with fixed default master
19.5.21 Round-Robin Arbitration without Default Master

This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.

AImEl@ 134

32058K  AVR32-01/12



19.5.2.2

19.5.2.3

Round-Robin Arbitration with Last Default Master

This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performed the access. Other non privileged masters still get one latency cycle if
they want to access the same slave. This technique can be used for masters that mainly perform
single accesses.

Round-Robin Arbitration with Fixed Default Master

This is another biased round-robin algorithm. It allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default mas-
ter will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.

19.5.3 Fixed Priority Arbitration

This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master requests are
active at the same time, the master with the highest priority number is serviced first. If two or
more master requests with the same priority are active at the same time, the master with the
highest number is serviced first.

For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (PRAS and PRBS).

19.6 Slave and Master assignation

32058K  AVR32-01/12

The index number assigned to Bus Matrix slaves and masters are described in Memories
chapter.

AImEl@ 135



19.7 User Interface

Table 19-1.  Register Mapping

Offset Register Name Access Reset Value
0x0000 Master Configuration Register 0 MCFGO Read/Write 0x00000002
0x0004 Master Configuration Register 1 MCFG1 Read/Write 0x00000002
0x0008 Master Configuration Register 2 MCFG2 Read/Write 0x00000002
0x000C Master Configuration Register 3 MCFG3 Read/Write 0x00000002
0x0010 Master Configuration Register 4 MCFG4 Read/Write 0x00000002
0x0014 Master Configuration Register 5 MCFG5 Read/Write 0x00000002
0x0018 Master Configuration Register 6 MCFG6 Read/Write 0x00000002
0x001C Master Configuration Register 7 MCFG7 Read/Write 0x00000002
0x0020 Master Configuration Register 8 MCFG8 Read/Write 0x00000002
0x0024 Master Configuration Register 9 MCFG9 Read/Write 0x00000002
0x0028 Master Configuration Register 10 MCFG10 Read/Write 0x00000002
0x002C Master Configuration Register 11 MCFG11 Read/Write 0x00000002
0x0030 Master Configuration Register 12 MCFG12 Read/Write 0x00000002
0x0034 Master Configuration Register 13 MCFG13 Read/Write 0x00000002
0x0038 Master Configuration Register 14 MCFG14 Read/Write 0x00000002
0x003C Master Configuration Register 15 MCFG15 Read/Write 0x00000002
0x0040 Slave Configuration Register 0 SCFGO Read/Write 0x00000010
0x0044 Slave Configuration Register 1 SCFG1 Read/Write 0x00000010
0x0048 Slave Configuration Register 2 SCFG2 Read/Write 0x00000010
0x004C Slave Configuration Register 3 SCFG3 Read/Write 0x00000010
0x0050 Slave Configuration Register 4 SCFG4 Read/Write 0x00000010
0x0054 Slave Configuration Register 5 SCFG5 Read/Write 0x00000010
0x0058 Slave Configuration Register 6 SCFG6 Read/Write 0x00000010
0x005C Slave Configuration Register 7 SCFG7 Read/Write 0x00000010
0x0060 Slave Configuration Register 8 SCFG8 Read/Write 0x00000010
0x0064 Slave Configuration Register 9 SCFG9 Read/Write 0x00000010
0x0068 Slave Configuration Register 10 SCFG10 Read/Write 0x00000010
0x006C Slave Configuration Register 11 SCFG11 Read/Write 0x00000010
0x0070 Slave Configuration Register 12 SCFG12 Read/Write 0x00000010
0x0074 Slave Configuration Register 13 SCFG13 Read/Write 0x00000010
0x0078 Slave Configuration Register 14 SCFG14 Read/Write 0x00000010
0x007C Slave Configuration Register 15 SCFG15 Read/Write 0x00000010
0x0080 Priority Register A for Slave 0 PRASO Read/Write 0x00000000
0x0084 Priority Register B for Slave 0 PRBSO Read/Write 0x00000000
0x0088 Priority Register A for Slave 1 PRAS1 Read/Write 0x00000000

AImEl@ 136

32058K  AVR32-01/12



Table 19-1.  Register Mapping (Continued)

Offset Register Name Access Reset Value
0x008C Priority Register B for Slave 1 PRBS1 Read/Write 0x00000000
0x0090 Priority Register A for Slave 2 PRAS2 Read/Write 0x00000000
0x0094 Priority Register B for Slave 2 PRBS2 Read/Write 0x00000000
0x0098 Priority Register A for Slave 3 PRAS3 Read/Write 0x00000000
0x009C Priority Register B for Slave 3 PRBS3 Read/Write 0x00000000
0x00A0 Priority Register A for Slave 4 PRAS4 Read/Write 0x00000000
0x00A4 Priority Register B for Slave 4 PRBS4 Read/Write 0x00000000
0x00A8 Priority Register A for Slave 5 PRAS5 Read/Write 0x00000000
0x00AC Priority Register B for Slave 5 PRBS5 Read/Write 0x00000000
0x00B0 Priority Register A for Slave 6 PRAS6 Read/Write 0x00000000
0x00B4 Priority Register B for Slave 6 PRBS6 Read/Write 0x00000000
0x00B8 Priority Register A for Slave 7 PRAS7 Read/Write 0x00000000
0x00BC Priority Register B for Slave 7 PRBS7 Read/Write 0x00000000
0x00CO0 Priority Register A for Slave 8 PRASS8 Read/Write 0x00000000
0x00C4 Priority Register B for Slave 8 PRBS8 Read/Write 0x00000000
0x00C8 Priority Register A for Slave 9 PRAS9 Read/Write 0x00000000
0x00CC Priority Register B for Slave 9 PRBS9 Read/Write 0x00000000
0x00D0 Priority Register A for Slave 10 PRAS10 Read/Write 0x00000000
0x00D4 Priority Register B for Slave 10 PRBS10 Read/Write 0x00000000
0x00D8 Priority Register A for Slave 11 PRAS11 Read/Write 0x00000000
0x00DC Priority Register B for Slave 11 PRBS11 Read/Write 0x00000000
0x00EO Priority Register A for Slave 12 PRAS12 Read/Write 0x00000000
0x00E4 Priority Register B for Slave 12 PRBS12 Read/Write 0x00000000
0x00E8 Priority Register A for Slave 13 PRAS13 Read/Write 0x00000000
O0x00EC Priority Register B for Slave 13 PRBS13 Read/Write 0x00000000
0x00F0 Priority Register A for Slave 14 PRAS14 Read/Write 0x00000000
0x00F4 Priority Register B for Slave 14 PRBS14 Read/Write 0x00000000
0x00F8 Priority Register A for Slave 15 PRAS15 Read/Write 0x00000000
0x00FC Priority Register B for Slave 15 PRBS15 Read/Write 0x00000000
0x0100 Master Remap Control Register MRCR Read/Write 0x00000000
0x0104 - 0x010C | Reserved - - -
0x0110 Special Function Register 0 SFRO Read/Write -
0x0114 Special Function Register 1 SFR1 Read/Write -
0x0118 Special Function Register 2 SFR2 Read/Write -
0x011C Special Function Register 3 SFR3 Read/Write -
0x0120 Special Function Register 4 SFR4 Read/Write -

AImEl@ 137

32058K  AVR32-01/12



Table 19-1.  Register Mapping (Continued)

32058K  AVR32-01/12

Offset Register Name Access Reset Value
0x0124 Special Function Register 5 SFR5 Read/Write -
0x0128 Special Function Register 6 SFR6 Read/Write -
0x012C Special Function Register 7 SFR7 Read/Write -
0x0130 Special Function Register 8 SFR8 Read/Write -
0x0134 Special Function Register 9 SFR9 Read/Write -
0x0138 Special Function Register 10 SFR10 Read/Write -
0x013C Special Function Register 11 SFR11 Read/Write -
0x0140 Special Function Register 12 SFR12 Read/Write -
0x0144 Special Function Register 13 SFR13 Read/Write -
0x0148 Special Function Register 14 SFR14 Read/Write -
0x014C Special Function Register 15 SFR15 Read/Write -
0x0150 - Ox01F8 | Reserved - -
ATMEL 138
. ________________[G]



19.7.1 Bus Matrix Master Configuration Registers

Register Name: MCFGO0...MCFG15

Access Type: Read/Write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I . I . I - I . I . I - I - I . |
15 14 13 12 11 10 9 8

I . I . I - I . I . I - I - I . |
7 6 5 4 3 2 1 0

I - I - I - I - I - I ULBT |

» ULBT: Undefined Length Burst Type
0: Infinite Length Burst

No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access

The undefined length burst is treated as a succession of single accesses, allowing re-arbitration at each beat of the INCR
burst.

2: Four Beat Burst

The undefined length burst is split into a four-beat burst, allowing re-arbitration at each four-beat burst end.

3: Eight Beat Burst

The undefined length burst is split into an eight-beat burst, allowing re-arbitration at each eight-beat burst end.
4: Sixteen Beat Burst

The undefined length burst is split into a sixteen-beat burst, allowing re-arbitration at each sixteen-beat burst end.

AImEl@ 139

32058K  AVR32-01/12



19.7.2 Bus Matrix Slave Configuration Registers

Register Name: SCFGO0...SCFG15

Access Type: Read/Write
31 30 29 28 27 26 25 24
- 1 - T - - - S ARET ]
23 22 21 20 19 18 17 16
| - [ - | FIXED_DEFMSTR | DEFMSTR_TYPE |
15 14 13 12 11 10 9 8
- T - T - - - R — ]
7 6 5 4 3 2 1 0

| SLOT_CYCLE |

¢ SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.

This limit has been placed to avoid locking a very slow slave when very long bursts are used.

This limit must not be very small. Unreasonably small values break every burst and the Bus Matrix arbitrates without per-
forming any data transfer. 16 cycles is a reasonable value for SLOT_CYCLE.

« DEFMSTR_TYPE: Default Master Type

0: No Default Master

At the end of the current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one cycle latency for the first access of a burst transfer or for a single access.

1: Last Default Master

At the end of the current slave access, if no other master request is pending, the slave stays connected to the last master
having accessed it.

This results in not having one cycle latency when the last master tries to access the slave again.
2: Fixed Default Master

At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number that has been written in the FIXED_DEFMSTR field.

This results in not having one cycle latency when the fixed master tries to access the slave again.
* FIXED_DEFMSTR: Fixed Default Master

This is the number of the Default Master for this slave. Only used if DEFMSTR_TYPE is 2. Specifying the number of a mas-
ter which is not connected to the selected slave is equivalent to setting DEFMSTR_TYPE to 0.

* ARBT: Arbitration Type
0: Round-Robin Arbitration

1: Fixed Priority Arbitration

AImEl@ 140

32058K  AVR32-01/12



19.7.3 Bus Matrix Priority Registers A For Slaves

Register Name: PRASO...PRAS15

Access Type: Read/Write
31 30 29 28 27 26 25 24

| M7PR [ M6PR |
23 22 21 20 19 18 17 16

| M5PR [ M4PR |
15 14 13 12 11 10 9 8

| M3PR [ M2PR |
7 6 5 4 3 2 1 0

| M1PR [ MOPR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AImEl@ 141

32058K  AVR32-01/12



19.7.4 Bus Matrix Priority Registers B For Slaves

Register Name: PRBSO0...PRBS15

Access Type: Read/Write
31 30 29 28 27 26 25 24

| M15PR [ M14PR |
23 22 21 20 19 18 17 16

| M13PR [ M12PR |
15 14 13 12 11 10 9 8

| M11PR [ M10PR |
7 6 5 4 3 2 1 0

| M9PR [ M8PR |

* MxPR: Master x Priority
Fixed priority of Master x for accessing the selected slave. The higher the number, the higher the priority.

AImEl@ 142

32058K  AVR32-01/12



19.7.5 Bus Matrix Master Remap Control Register

Register Name: MRCR

Access Type: Read/Write

Reset: 0x0000_0000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

| RCB15 [ RCB14 | RCB13 [ RCB12 [ RCB11 [ RCB10 | RCB9 RCB8 |
7 6 5 4 3 2 1 0

| RCB7 [ RCB6 | RCB5 [ RCB4 [ RCB3 [ RCB2 | RCB1 RCBO |

 RCB: Remap Command Bit for Master x

0: Disable remapped address decoding for the selected Master

1: Enable remapped address decoding for the selected Master

32058K  AVR32-01/12

ATMEL

143



19.7.6 Bus Matrix Special Function Registers

Register Name: SFRO...SFR15

Access Type: Read/Write

Reset:
31 30 29 28 27 26 25 24

| SFR |
23 22 21 20 19 18 17 16

| SFR |
15 14 13 12 11 10 9 8

| SFR |
7 6 5 4 3 2 1 0

SFR |

* SFR: Special Function Register Fields

The bitfields of these registers are described in the Peripherals chapter.

32058K  AVR32-01/12

ATMEL

144



20. External Bus Interface (EBI)

Rev: 1.0.0.1
20.1 Features

* Present only on AT32UC3A0512 and AT32UC3A0256
* Optimized for Application Memory Space support
* Integrates Two External Memory Controllers:
— Static Memory Controller
— SDRAM Controller
* Optimized External Bus:
— 16-bit Data Bus
— 24-bit Address Bus, Up to 16-Mbytes Addressable
— Optimized pin multiplexing to reduce latencies on External Memories
* 4 SRAM Chip Selects, 1 SDRAM Chip Selects:
— Static Memory Controller on NCSO
— SDRAM Controller or Static Memory Controller on NCS1
— Static Memory Controller on NCS2
— Static Memory Controller on NCS3

20.2 Description

The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the AT32UC3A device. The Static Memory and SDRAM Control-
lers are all featured external Memory Controllers on the EBI. These external Memory Controllers
are capable of handling several types of external memory and peripheral devices, such as
SRAM, PROM, EPROM, EEPROM, Flash, and SDRAM.

The EBI handles data transfers with up to five external devices, each assigned to five address
spaces defined by the embedded Memory Controller. Data transfers are performed through a
16-bit data bus, an address bus of up to 24 bits, up to four chip select lines (NCS[3:0]) and sev-
eral control pins that are generally multiplexed between the different external Memory
Controllers.

AImEl@ 145

32058K  AVR32-01/12



20.3 Block Diagram
20.3.1 External Bus Interface

Figure 20-1 shows the organization of the External Bus Interface.

Figure 20-1. Organization of the External Bus Interface

Bus M atrix Extaernal Bus Interface

D[15:0]
ALMBSO

HaE SDRAM
Controller

e e
ATMWR2ZMNBS2

A[15:2], A[22 18]
A16BAD

ML

Static Logic

Memaory
gl el CONONET | —

Al1FBAT
MCS0

MC31/30C50
MED/MNOE

MWROMWE

MWH1/MBS1

MWH3/MBS3
MCS3

A[23]
PO

RAS

h 4

Address Decoders

CAS

Chip Select
Aszsignor

SDWE
50410
MCS2

MWAIT

User Interface SDCK

I

Peripheral Bus

sDCKE
SDC31

banhbibbdabbobhnsdbisiy

AImEl@ 146

32058K  AVR32-01/12



20.4 1/0 Lines Description
Table 20-1. EBI I/O Lines Description
Name Function Type Active Level
EBI
DO - D15 Data Bus I/0
AOQ - A23 Address Bus Output
NWAIT External Wait Signal Input Low
SMC
NCSO0 - NCS3 Chip Select Lines Output Low
NWRO - NWR3 Write Signals Output Low
NOE Output Enable Output Low
NRD Read Signal Output Low
NWE Write Enable Output Low
NBSO - NBS3 Byte Mask Signals Output Low
SDRAM Controller
SDCK SDRAM Clock Output
SDCKE SDRAM Clock Enable Output High
BAO - BA1 Bank Select Output
SDWE SDRAM Write Enable Output Low
RAS - CAS Row and Column Signal Output Low
NWRO - NWR3 Write Signals Output Low
NBSO - NBS3 Byte Mask Signals Output Low
SDA10 SDRAM Address 10 Line Output

Depending on the Memory Controller in use, all signals are not connected directly through the

32058K  AVR32-01/12

Mux Logic.
Table 20-2 on page 147 details the connections between the two Memory Controllers and the
EBI pins.
Table 20-2.  EBI Pins and Memory Controllers 1/O Lines Connections
EBI Pins SDRAMC I/O Lines SMC I/O Lines
NWR1/NBS1 NBS1 NWR1/NUB
AO/NBSO Not Supported SMC_AO0/NLB
A1/NBS2/NWR2 Not Supported SMC_A1
A[11:2] SDRAMC_A[9:0] SMC_A[11:2]
SDA10 SDRAMC_A10 Not Supported
A12 Not Supported SMC_A12
A[14:13] SDRAMC_A[12:11] SMC_A[14:13]
ATMEL 147
. ________________[G]




Table 20-2.  EBI Pins and Memory Controllers 1/O Lines Connections
EBI Pins SDRAMC I/O Lines SMC I/O Lines
A[22:15] Not Supported SMC_A[22:15]
A[23] Not Supported SMC_A[23]
D[15:0] D[15:0] D[15:0]

20.5 Application Example

20.5.1 Hardware Interface

32058K  AVR32-01/12

Table 20-3 on page 148 details the connections to be applied between the EBI pins and the
external devices for each Memory Controller.

Table 20-3.  EBI Pins and External Static Devices Connections

Signals Pins of the Interfaced Device
8-bit Static ZSxtaSt-igit 16-bit Static
Device Devices Device

Controller SMC
DO - D7 DO - D7 DO - D7 DO - D7
D8 - D15 - D8 - D15 D8 - D15
AO/NBSO AO - NLB
A1/NWR2/NBS2 A1 A0 A0
A2 - A22 A[2:22] A[1:21] A[1:21]
A23 A[23] A[22] A[22]
NCSO0 Cs Cs Cs
NCS1/SDCS0 CS CSs CS
NCS2 CS CS CS
NCS3 Cs Cs Cs
NRD/NOE OE OE OE
NWRO/NWE WE WE®M WE
NWR1/NBS1 - WE® NUB
NWR3/NBS3 - - -

Notes: NWR1 enables upper byte writes. NWRO enables lower byte writes.

NWRx enables corresponding byte x writes. (x = 0,1,2 or 3)

NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
BEx: Byte x Enable (x = 0,1,2 or 3)

ATMEL

1
2.
3. NBSO0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
4
5

148



32058K  AVR32-01/12

Table 20-4.

EBI Pins and External SDRAM Devices Connections

Signals

Pins of the Interfaced
Device

SDRAM

Controller

SDRAMC

DO - D15

DO - D15

AO/NBSO

A1/NWR2/NBS2

A2 -A10

A11

SDA10

A12

A13 - A14

Al11:12]

A15

A16/BA0

A17/BA1

A18 - A23

NCSO0

NCS1/SDCS0

NCS2

NCS2

NCS3

NRD/NOE

NWRO/NWE

NWR1/NBS1

NWRS3/NBS3

SDCK

SDCKE

RAS

CAS

SDWE

NWAIT

ATMEL

149



AT32UC3A

20.5.2 Connection Examples

Figure 20-2 shows an example of connections between the EBI and external devices.

Figure 20-2. EBI Connections to Memory Devices

EBI
D0-D15
N\
RAS
cAs T\ 2M x 8 2M x 8
SDCK| N\ SDRAM SDRAM
SDCKE| — N\ DO-D7 D8-D15}
DO-D7 DO-D7
SDWE N\
AO/NBSO N cs cs
NWR1/NBS1 A CLK CLK
A1NWR2/NBS2[ CKE A0-A9, A11|_A2-A11.A13 Cre AO-A9, A11|_A2-A11,A13
NWR3/NBS3 N\ WE A10 SDWE] \vE A10
NRD/NOE| N RAS BAO [AT6/BA0 RAS BAO [_AT6/BA0
NWRO/NWE N\ CAS BA1 [_AT7/BAT cAS BA1
NBSO bau NBS1 bam
N\
SDA10 —\ K
A2-A15 N
A16/BAO N
A17/BA1 N
A18-A23__N
—
NCSO
NCS1/SDC:
NCS2
NCS3
) 3
( ( /
128K x 8 128K x 8
SRAM SRAM
A1-A17 A1-A17
Do-D7 DO-D7 A0-A16 D8-D15 DO-D7 A0-A16
cs cs
— 1 & O
[N_RRDNOE | e WE
AO/NWRO/NBSO| NWR1/NBS1
\

AImEl@ 150

32058K  AVR32-01/12



20.6 Product Dependencies
20.6.1 I/O Lines

The pins used for interfacing the External Bus Interface may be multiplexed with the GPIO lines.
The programmer must first program the GPIO controller to assign the External Bus Interface
pins to their peripheral function. If I/O lines of the External Bus Interface are not used by the
application, they can be used for other purposes by the GPIO Controller.

20.6.2 Power Management

The EBI HSB clock and SDRAMC, SMC and ECC PB clocks are generated by the Power Man-
ager. Before using the EBI, the programmer must ensure that these clocks are enabled in the
Power Manager.

To prevent bus errors EBI operation must be terminated before entering sleep mode

20.6.3 Interrupt

The EBI interface has an interrupt line connected to the Interrupt Controller. Handling the EBI
interrupt requires programming the interrupt controller before configuring the EBI.

20.7 Functional Description

The EBI transfers data between the internal HSB Bus (handled by the HMatrix) and the external
memories or peripheral devices. It controls the waveforms and the parameters of the external
address, data and control busses and is composed of the following elements:

» The Static Memory Controller (SMC)

» The SDRAM Controller (SDRAMC)

+ A chip select assignment feature that assigns an HSB address space to the external devices

» A multiplex controller circuit that shares the pins between the different Memory Controllers
20.7.1 Bus Multiplexing

The EBI offers a complete set of control signals that share the 16-bit data lines, the address
lines of up to 24 bits and the control signals through a multiplex logic operating in function of the
memory area requests.

Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.

20.7.2 Pull-up Control

A specific HMATRIX_SFR register in the Matrix User Interface permit enabling of on-chip pull-up
resistors on the data bus lines not multiplexed with the GPIO Controller lines. For details on this
register, refer to the Peripherals Section. The pull-up resistors are enabled after reset. Setting
the EBI_DBPUC bit disables the pull-up resistors on lines not muxed with GPIO. Enabling the
pull-up resistor on lines multiplexed with GPIO lines can be performed by programming the
appropriate GPIO controller.

AImEl@ 151

32058K  AVR32-01/12



20.7.3 Static Memory Controller

For information on the Static Memory Controller, refer to the Static Memory Controller Section.

20.7.4 SDRAM Controller

For information on the SDRAM Controller, refer to the SDRAM Section.

AImEl@ 152

32058K  AVR32-01/12



21. Peripheral DMA Controller (PDCA)

21.1 Features

21.2 Overview

32058K  AVR32-01/12

rev: 1.0.0.0

* Generates Transfers to/from Peripherals such as USART, SSC and SPI
* Two address pointers/counters per channel allowing double buffering

The Peripheral DMA controller (PDCA) transfers data between on-chip peripheral modules such
as USART, SPI, SSC and on- and off-chip memories. Using the PDCA avoids CPU intervention
for data transfers, improving the performance of the microcontroller. The PDCA can transfer
data from memory to a peripheral or from a peripheral to memory.

The PDCA consists of a number of DMA channels. Each channel has:

* A 32-bit memory pointer
* A 16-bit transfer counter
* A 32-bit memory pointer reload value
» A 16-bit transfer counter reload value

The PDCA communicates with the peripheral modules over a number of handshake interfaces.
The peripheral signals to the PDCA when it is ready to receive or transmit data. The PDCA
acknowledges the request when the transmission has started.

The number of handshake-interfaces may be higher than the number of DMA channels. If this is
the case, the DMA channel must be programmed to use the desired interface.

When a transmit buffer is empty or a receive buffer is full, an interrupt request can be signalled.

AImEl@ 153



21.3 Block Diagram

Perl%heral
HSB to PB
Bridge
HSB .
I I — Perlr;heral
3
@
Bus Matrix §
=
HSB E .
Per|p2heral
Peripheral DMA
Controller —p
(PDCA)

Interrupt IRQ — Peripheral
Controller |~ (n-1)
A\ A A |

Handshake interfaces

21.4 Functional Description

214.1

21.4.2

Configuration

Each channel in the PDCA has a set of configuration registers. Among these are the Memory
Address Register (MAR), the Peripheral Select Register (PSR) and the Transfer Counter Regis-
ter (TCR). The 32-bit Memory Address Register must be programmed with the start address of
the memory buffer. The register will be automatically updated after each transfer to point to the
next location in memory. The Peripheral Select Register must be programmed to select the
desired peripheral/handshake interface. The Transfer Counter Register determines the number
of data items to be transferred. The counter will be decreased by one for each data item that has
been transferred.

Both the Memory Address Register and the Transfer Counter Register can be read at any time
to check the progress of the transfer.

Each channel has also reload registers for the Memory Address Register and the Transfer
Counter Register. When the TCR reaches zero, the values in the reload registers are loaded into
MAR and TCR. In this way, the PDCA can operate on two buffers for each channel.

Memory Pointer

32058K  AVR32-01/12

Each channel has a 32-bit Memory Pointer Register (MAR). This register holds the memory
address for the next transfer to be performed. The register is automatically updated after each

AImEl@ 154



2143

21.4.4

2145

21.4.6

21.4.7

21.4.8

32058K  AVR32-01/12

transfer. The address will be increased by either 1, 2 or 4 depending on the size of the DMA
transfer (Byte, Half-Word or Word). The Memory Address Register can be read at any time dur-
ing transfer.

Transfer Counter
Each channel has a 16-bit Transfer Counter Register (TCR). This register must be programmed
with the number of transferred to be performed. TCR should contain the number of data items to
be transferred independently of the transfer size. The Transfer Counter Register can be read at
any time during transfer to see the number of remaining transfers.

Reload Registers
Both the Memory Address Register and the Transfer Counter Register have a reload register,
respectively Memory Address Reload Register (MARR) and Transfer Counter Reload Register
(TCRR). These registers provide the possibility for the PDCA to work on two memory buffers for
each channel. When one buffer has completed, MAR and TCR will be reloaded with the values
in MARR and TCRR. The reload logic is always enabled and will trigger if the TCR reaches zero
while TCRR holds a non-zero value.

Peripheral Selection
The Peripheral Select Register decides which peripheral should be connected to the PDCA
channel. Configuring PSR will both select the direction of the transfer (memory to peripheral or
peripheral to memory), which handshake interface to use, and the address of the peripheral
holding register.

Transfer Size
The transfer size can be set individually for each channel to be either Byte, Half-Word or Word
(8-bit, 16-bit or 32-bit respectively). Transfer size is set by programming the SIZE bit-field in the
Mode Register (MR).

Enabling and Disabling
Each DMA channel is enabled by writing ‘1’ to the Transfer Enable bit (TEN) in the Control Reg-
ister (CR) and disabled by writing ‘1’ to the Transfer Disable bit (TDIS). The current status can
be read from the Status Register (SR).

Interrupts
Interrupts can be enabled by writing to the Interrupt Enable Register (IER) and disabled by writ-
ing to Interrupt Disable Register (IDR). The Interrupt Mask Register (IMR) can be read to see
whether an interrupt is enabled or not. The current status of an interrupt source can be read
through the Interrupt Status Register (ISR).

The PDCA has three interrupt sources:

* Reload Counter Zero - The Transfer Counter Reload Register is zero.

« Transfer Finished - Both the Transfer Counter Register and Transfer Counter Reload Register
are zero.

* Transfer Error - An error has occurred in accessing memory.

AImEl@ 155



21.4.9 Priority
If more then one PDCA channel is requesting transfer at a given time, the PDCA channels are
prioritized by their channel number. Channels with lower numbers have priority over channels
with higher numbers, giving channel 0 the highest priority.

21.4.10 Error Handling

If the memory address is set to point to an invalid location in memory, an error will occur when
the PDCA tries to perform a transfer. When an error occurs, the Transfer Error flag (TERR) in
the Interrupt Status Register will be set and the DMA channel that caused the error will be
stopped. In order to restart the channel, the user must program the Memory Address Register to
a valid address and then write the Error Clear bit (ECLR) in the Control Register (CR) to “1°. An
interrupt can optionally be triggered on errors by writing the TERR-bit in the Interrupt Enable
Register (IER) to ‘1.

21.5 User Interface

2151 Memory Map Overview

Table 21-1. Register Map Overview

Address Range Contents

0x0000 - 0x003F DMA channel 0 configuration registers

0x0040 - 0x007F DMA channel 1 configuration registers

0x0080 - 0x00BF DMA channel 2 configuration registers

0x00CO0 - Ox00FF DMA channel 3 configuration registers

0x0100 - 0x013F DMA channel 4 configuration registers
- DMA channel n-1 configuration registers

Note:  The number of channels is implementation specific. See part documentation for details.

215.2 Channel Memory Map

Offset Register Register Name Access Reset
0x00 Memory Address Register MAR Read/Write 0x00000000
0x04 Peripheral Select Register PSR Read/Write *
0x08 Transfer Counter Register TCR Read/Write 0x00000000
0x0C Memory Address Reload Register MARR Read/Write 0x00000000
0x10 Transfer Counter Reload Register TCRR Read/Write 0x00000000
0x14 Control Register CR Write-only -
0x18 Mode Register MR Read/Write 0x00000000
0x1C Status Register SR Read-only 0x00000000
0x20 Interrupt Enable Register IER Write-only -

AImEl@ 156

32058K  AVR32-01/12



Offset Register Register Name Access Reset
0x24 Interrupt Disable Register IDR Write-only -

0x28 Interrupt Mask Register IMR Read-only 0x00000000
0x2C Interrupt Status Register ISR Read-only 0x00000000

AImEl@ 157

32058K  AVR32-01/12



21.5.3 PDCA Memory Address Register

Name: MAR

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ MADDR ‘
23 22 21 20 19 18 17 16

‘ MADDR ‘
15 14 13 12 11 10 9 8

‘ MADDR ‘
7 6 5 4 3 2 1 0

‘ MADDR ‘

* MADDR: Memory Address

Address of memory buffer. MADDR should be programmed to point to the start of the memory buffer when configuring the
PDCA. During transfer, MADDR will point to the next memory location to be read/written.

AImEl@ 158

32058K  AVR32-01/12



2154 PDCA Peripheral Select Register

Name: PSR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - - - r - - - [ - [ - |
23 22 21 20 19 18 17 16

. - r - r - r-r - r - [ - [ - |
15 14 13 12 11 10 9 8

. - - r - r -t - r - [ - [ - |
7 6 5 4 3 2 1 0

‘ PID ‘

* PID: Peripheral Identifier

The Peripheral Identifier selects which peripheral should be connected to the DMA channel. Programming PID will select
both which handshake interface to use, the direction of the transfer and also the address of the Receive/Transfer Holding
Register for the peripheral. The PID values for the different peripheral modules are implementation specific. See the part
specific documentation for details.

The width of the PID bitfield is implementation specific and dependent on the number of peripheral modules in the
microcontroller.

AImEl@ 159

32058K  AVR32-01/12



21.5.5PDCA Transfer Counter Register

Name: TCR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - 1 - [ - |
23 22 21 20 19 18 17 16

. - - r - r - r - ;- ;- [} - |
15 14 13 12 11 10 9 8

| TCV |
7 6 5 4 3 2 1 0

‘ TCV ‘

* TCV: Transfer Counter Value

Number of data items to be transferred by PDCA. TCV must be programmed with the total number of transfers to be made.
During transfer, TCV contains the number of remaining transfers to be done.

AImEl@ 160

32058K  AVR32-01/12



21.5.6 PDCA Memory Address Reload Register

Name: MARR

Access Type: Read/Write
31 30 29 28 27 26 25 24

‘ MARV ‘
23 22 21 20 19 18 17 16

‘ MARV ‘
15 14 13 12 11 10 9 8

‘ MARV ‘
7 6 5 4 3 2 1 0

‘ MARV ‘

* MARV: Memory Address Reload Value

Reload Value for the Memory Address Register (MAR). This value will be loaded into MAR when TCR reaches zero if the
TCRR has a non-zero value.

AImEl@ 161

32058K  AVR32-01/12



21.5.7 PDCA Transfer Counter Reload Register

Name: TCRR

Access Type: Read/Write
31 30 29 28 27 26 25 24

. - ! - r - r -+ - ;r - 1 - [ - |
23 22 21 20 19 18 17 16

. - - r - r - r - ;- ;- [} - |
15 14 13 12 11 10 9 8

‘ TCRV ‘
7 6 5 4 3 2 1 0

‘ TCRV ‘

* TCRV: Transfer Counter Reload Value

Reload value for the Transfer Counter Register (TCR). When TCR reaches zero, it will be reloaded with TCRV if TCRV has
a positive value. If TCRYV is zero, no more transfers will be performed for the channel. When TCR is realoaded, the Transfer
Counter Reload Register is cleared.

AImEl@ 162

32058K  AVR32-01/12



21.5.8 PDCA Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

| | -] - | -]
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

N e e e e e -
7 6 5 4 3 2 1 0

e e

* ECLR: Error Clear
0 = No Effect.

1 = Clear Transfer Error (TERR) flag in the Status Register (SR). Clearing the Transfer Error flag will allow the channel to
transmit data. The memory address must first be set to point to a valid location.

* TEN: Transfer Enable
0 = No Effect.

1 = Enable transfer for DMA channel.

* TDIS: Transfer Disable
0 = No Effect.

1 = Disable transfer for DMA channel.

AImEl@ 163

32058K  AVR32-01/12



21.5.9 PDCA Mode Register

Name: MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | | | | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I R O R

* SIZE: Size of transfer

SIZE Size of Transfer

0 Byte

1 Half-Word
0 Word
1

- = | O O

Reserved

AImEl@ 164

32058K  AVR32-01/12



21.5.10 PDCA Status Register

Name: SR

Access Type: Read
31 30 29 28 27 26 25 24

| | | | - | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

I R R R I AR B B

* TEN: Transfer Enabled
0 = Transfer is disabled for the DMA channel

1 = Transfer is enabled for the DMA channel.

AImEl@ 165

32058K  AVR32-01/12



21.5.11 PDCA Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

‘ ] ‘ ] ‘ ] \ ] \ - ‘ TERR \ TRC \ RCZ ‘

* TERR: Transfer Error
0 = No effect.

1 = Enable Transfer Error interrupt.

* TRC: Transfer Complete
0 = No effect.

1 = Enable Transfer Complete interrupt.

* RCZ: Reload Counter Zero
0 = No effect.

1 = Enable Reload Counter Zero interrupt.

AImEl@ 166

32058K  AVR32-01/12



21.5.12 PDCA Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| | | | I | | |
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

‘ ] ‘ ] ‘ ] \ ] \ - ‘ TERR \ TRC \ RCZ ‘

* TERR: Transfer Error
0 = No effect.

1 = Disable Transfer Error interrupt.

* TRC: Transfer Complete
0 = No effect.

1 = Disable Transfer Complete interrupt.

* RCZ: Reload Counter Zero
0 = No effect.

1 = Disable Reload Counter Zero interrupt.

AImEl@ 167

32058K  AVR32-01/12



21.5.13 PDCA Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

| | - - | I
23 22 21 20 19 18 17 16

| | | | - | | |
15 14 13 12 11 10 9 8

| | | | - | | |
7 6 5 4 3 2 1 0

‘ ] ‘ ] ‘ ] \ ] \ - ‘ TERR \ TRC \ RCZ ‘

* TERR: Transfer Error
0 = Transfer Error interrupt is disabled.

1 = Transfer Error interrupt is enabled.

* TRC: Transfer Complete
0 = Transfer Complete interrupt is disabled.

1 = Transfer Complete interrupt is enabled.

* RCZ: Reload Counter Zero
0 = Reload Counter Zero interrupt is disabled.

1 = Reload Counter Zero interrupt is enabled.

AImEl@ 168

32058K  AVR32-01/12



21.5.14 PDCA Interrupt Status Register

Name: ISR
Access Type: Read-only
31 30 29 28 27 26 25 24
- ! - r - r -t - 1+ - [ - [ - |
23 22 21 20 19 18 17 16
- r - r - r - r - ;r - [ - [ - |
15 14 13 12 11 10 9 8
- - -+ - ;- ;- [ - [ - |
7 6 5 4 3 2 1 0

‘ ] ‘ ] ‘ ] \ ] \ - ‘ TERR \ TRC \ RCZ ‘

* TERR: Transfer Error
0 = No transfer errors have occurred.

1 = A transfer error has occurred.

* TRC: Transfer Complete

0 = The Transfer Counter Register (TCR) and/or the Transfer Counter Reload Register (TCRR) hold a non-zero value.
1 = Both the Transfer Counter Register (TCR) and the Transfer Counter Reload Register (TCRR) are zero.

* RCZ: Reload Counter Zero

0 = The Transfer Counter Reload Register (TCRR) holds a non-zero value.

1 = The Transfer Counter Reload Register (TCRR) is zero.

AImEl@ 169

32058K  AVR32-01/12



22. General-Purpose Input/Output Controller (GPIO)

Rev. 1.1.0.2

22.1 Features

Each 1/O line of the GPIO features:

* Configurable pin-change, rising-edge or falling-edge interrupt on any /O line.

* A glitch filter providing rejection of pulses shorter than one clock cycle.
* Open Drain mode enabling sharing of an /O line between the MCU and external components.
* Input visibility and output control.

* Multiplexing of up to four peripheral functions per I/O line.

* Programmable internal pull-up resistor.

22.2 Overview

The General Purpose Input/Output manages the 1/O pins of the microcontroller. Each I/O line
may be dedicated as a general-purpose 1/O or be assigned to a function of an embedded periph-
eral. This assures effective optimization of the pins of a product.

Table 22-1.  Overview of the GPIO system

PBA Configuration

Interface

—_—

A

GPIO Interrupt Request

Interrupt Controller

GPIO Clock

Power Manager

Embedded
Peripheral

-t

\4

Pin Control
Signals

-t

\4

22.3 Product dependencies

223.1 Module Configuration

General Purpose
Input/Output - GPIO

PIN

PIN

PIN

PIN

PIN

MCU
1/0 Pins

Most of the features of the GPIO are configurable for each product. The programmer must refer
to the Peripherals Section for these settings.

Product specific settings includes:

32058K  AVR32-01/12

ATMEL

170



* Number of I/O pins.

* Functions implemented on each pin.

* Peripheral function(s) multiplexed on each 1/O pin.
* Reset state of registers.

22.3.2 Interrupt Lines

The GPIO interrupt lines are connected to the interrupt controller. Using the GPIO interrupt
requires the interrupt controller to be programmed first.

22.3.3 Power and Clock Management

The clock for the GPIO is controlled by the power manager. The programmer must ensure that
the GPIO clock is enabled in the power manager before using the GPIO. The clock must be
enabled in order to access the configuration registers of the GPIO and when interrupts are
enabled. After configuring the GPIO, the clock can be disabled if interrupts are not enabled.

22.4 Functional Description

The GPIO controls the 1/0 lines of the microcontroller. The control logic associated with each pin
is represented in the figure below:

Figure 22-1. Overview of the GPIO pad connections

GPIO_PUER

O

Periph. A output enable

Periph. B output enable

Periph. C output enable

Periph. D output enable

GPIO_PMR1

GPIO_GPER

GPIO_PMRO

Periph. A output data
Periph. B output data
Periph. C output data
Periph. D output data .
1
[

_Periph. Ainput data ‘

¢_Periph. B input data ‘

q_Ferich-Clinputdata | GPIO_PVR

Periph. D input data

GPIO_IER

—— Edge Detector

———— Glitch Filter

GPIO_IMR1

GPIO_GFER GPIO_IMRO

22.4.1 Pull-up Resistor Control
Each 1/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by accessing the corresponding bit in PUER (Pull-up Enable Register). Control of the
pull-up resistor is possible whether an 1/O line is controlled by a peripheral or the GPIO.

AImEl@ 171

32058K  AVR32-01/12



22.4.2 I/0 Line or Peripheral Function Selection

When a pin is multiplexed with one or more peripheral functions, the selection is controlled with
the register GPER. If a bit in the register is set, the corresponding pin is controlled by the GPIO.
If a bit is cleared, the corresponding pin is controlled by a peripheral function.

22.4.3 Peripheral Selection

22.4.4 Output Control

The GPIO provides multiplexing of up to four peripheral functions on a single pin. The selection
is performed by accessing PMRO (Peripheral Mux Register 0) and PMR1 (Peripheral Mux Regis-
ter 1).

When the /O line is assigned to a peripheral function, i.e. the corresponding bit in GPER is at 0,
the drive of the I/O line is controlled by the peripheral. The peripheral, depending on the value in
PMRO and PMR1, determines whether the pin is driven or not.

When the I/O line is controlled by the GPIO, the value of ODER (Output Driver Enable Register)
determines if the pin is driven or not. When a bit in this register is at 1, the corresponding I/O line
is driven by the GPIO. When the bit is at 0, the GPIO does not drive the line.

The level driven on an /O line can be determined by writing OVR (Output Value Register).

2245 Open Drain Mode

22.4.6 Inputs

32058K  AVR32-01/12

Each 1/O line can be independently programmed to operate in open drain mode. This feature
permits several drivers to be connected on the I/O line. The drivers should only actively drive the
line low. An external pull-up resistor (or enabling the internal one) is generally required to guar-
antee a high level on the line when no driver is active.

The Open Drain feature is controlled by ODMER (Open Drain Mode Enable Register). The Open
Drain mode can be selected whether the I/O line is controlled by the GPIO or assigned to a
peripheral function.

The level on each I/O line can be read through PVR (Pin Value Register). This register indicates
the level of the I/O lines regardless of whether the lines are driven by the GPIO or by an external
component. Note that due to power saving measures, PVR register can only be read when
GPER is set for the corresponding pin or if interrupt is enabled for the pin.

Output Line Timings

The figure below shows the timing of the I/O line when setting and clearing the Output Value
Register by accessing OVR. The same timing applies when performing a ‘set’ or ‘clear’ access
i.e. writing to OVRS or OVRC. The timing of PVR (Pin Value Register) is also shown.

AImEl@ 172



AT32UC3A

Figure 22-2. Output line timings

ot e I e I

Write GPIO_OVR to 1 PBA Access

Write GPIO_OVR to 0 PBA Access

GPIO_OVR/ /O Line

GPIO_PVR

22.4.7 Interrupts

The GPIO can be programmed to generate an interrupt when it detects an input change on an
I/0 line. The module can be configured to signal an interrupt whenever a pin changes value or
only to trigger on rising edges or falling edges. Interrupt is enabled on a pin by setting the corre-
sponding bit in IER (Interrupt Enable Register). The interrupt mode is set by accessing IMRO
(Interrupt Mode Register 0) and IMR1 (Interrupt Mode Register 1). Interrupt can be enabled on a
pin, regardless of the configuration the I/O line, i.e. controlled by the GPIO or assigned to a
peripheral function.

In every port there are four interrupt lines connected to the interrupt controller. Every eigth inter-
rupts in the port are ored together to form an interrupt line.

When an interrupt event is detected on an 1/O line, and the corresponding bit in IER is set, the
GPIO interrupt request line is asserted. A number of interrupt signals are ORed-wired together
to generate a single interrupt signal to the interrupt controller.

IFR (Interrupt Flag Register) can by read by software to determine which pin(s) caused the inter-
rupt. The interrupt flag must be manually cleared by writing to IFR.

GPIO interrupts can only be triggered when the GPIO clock is enabled.

22.4.8 Input Glitch Filter

Optional input glitch filters can be enabled on each I/O line. When the glitch filter is enabled, a
glitch with duration of less than 1 clock cycle is automatically rejected, while a pulse with dura-
tion of 2 clock cycles or more is accepted. For pulse durations between 1 clock cycle and 2 clock
cycles, the pulse may or may not be taken into account, depending on the precise timing of its
occurrence. Thus for a pulse to be guaranteed visible it must exceed 2 clock cycles, whereas for
a glitch to be reliably filtered out, its duration must not exceed 1 clock cycle. The filter introduces
2 clock cycles latency.

The glitch filters are controlled by the register GFER (Glitch Filter Enable Register). When a bit is
set in GFER, the glitch filter on the corresponding pin is enabled. The glitch filter affects only
interrupt inputs. Inputs to peripherals or the value read through PVR are not affected by the
glitch filters.

22.4.9 Interrupt Timings
The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is disabled. For the pulse to be registered, it must be sampled at the rising edge of the clock. In
this example, this is not the case for the first pulse. The second pulse is however sampled on a
rising edge and will trigger an interrupt request.

AImEl@ 173

32058K  AVR32-01/12



32058K  AVR32-01/12

AT32UC3A

Figure 22-3. Interrupt timing with glitch filter disabled

S N v
Pin Level ’_H_m HTTH

GPIO_IFR

The figure below shows the timing for rising edge (or pin-change) interrupts when the glitch filter
is enabled. For the pulse to be registered, it must be sampled on two subsequent rising edges.
In the example, the first pulse is rejected while the second pulse is accepted and causes an
interrupt request.

Figure 22-4. Interrupt timing with glitch filter enabled

pinlninEnEnEnEnEnEnEnl
SR 1 O O 11

GPIO_IFR

AImEl@ 174



22.5 General Purpose Input/Output (GPIO) User Interface

The GPIO controls all the I/0O pins on the AVR32 microcontroller. The pins are managed as 32-
bit ports that are configurable through an PB interface. Each port has a set of configuration reg-
isters. The overall memory map of the GPIO is shown below. The number of pins and hence the
number of ports is product specific.

0x0000
Port 0 Configuration Registers

0x0100
Port 1 Configuration Registers

0x0200
Port 2 Configuration Registers

0x0300
Port 3 Configuration Registers

0x0400
Port 4 Configuration Registers

In the Peripheral muxing table in the Peripherals chapter each GPIO line has a unique number.
Note that the PA, PB, PC and PX ports do not directly correspond to the GPIO ports. To find the
corresponding port and pin the following formulas can be used:

GPIO port = floor((GPIO number) / 32), example: floor((36)/32) = 1
GPIO pin = GPIO number mod 32, example: 36 mod 32 = 4

The table below shows the configuration registers for one port. Addresses shown are relative to
the port address offset. The specific address of a configuration register is found by adding the
register offset and the port offset to the GPIO start address. One bit in each of the configuration
registers corresponds to an I/O pin.

Table 22-2.  GPIO Register Map

Offset Register Function Name Access Reset value
1b for each

0x00 GPIO Enable Register Read/Write GPER Read/Write implemented
GPIO pin in port

0x04 GPIO Enable Register Set GPERS Write-Only

0x08 GPIO Enable Register Clear GPERC Write-Only

0x0C GPIO Enable Register Toggle GPERT Write-Only

0x10 Peripheral Mux Register 0 Read/Write PMRO Read/Write 0x00000000

32058K  AVR32-01/12

ATMEL

175



Table 22-2.  GPIO Register Map
Offset Register Function Name Access Reset value
0x14 Peripheral Mux Register 0 Set PMROS Write-Only
0x18 Peripheral Mux Register 0 Clear PMROC Write-Only
0x1C Peripheral Mux Register 0 Toggle PMROT Write-Only
0x20 Peripheral Mux Register 1 Read/Write PMR1 Read/Write 0x00000000
0x24 Peripheral Mux Register 1 Set PMR1S Write-Only
0x28 Peripheral Mux Register 1 Clear PMR1C Write-Only
0x2C Peripheral Mux Register 1 Toggle PMRA1T Write-Only
0x30 RESERVED - -
0x34 RESERVED - =
0x38 RESERVED - -
0x3C RESERVED - -
0x40 Output Driver Enable Register Read/Write ODER Read/Write 0x00000000
0x44 Output Driver Enable Register Set ODERS Write-Only
0x48 Output Driver Enable Register Clear ODERC Write-Only
0x4C Output Driver Enable Register Toggle ODERT Write-Only
0x50 Output Value Register Read/Write OVR Read/Write 0x00000000
0x54 Output Value Register Set OVRS Write-Only
0x58 Output Value Register Clear OVRC Write-Only
0x5¢ Output Value Register Toggle OVRT Write-Only
0x60 Pin Value Register Read PVR Read-Only g;p:t';‘fielg on
0x64 Pin Value Register - -
0x68 Pin Value Register - -
0x6¢c Pin Value Register - -
0x70 Pull-up Enable Register Read/Write PUER Read/Write 0x00000000
0x74 Pull-up Enable Register Set PUERS Write-Only
0x78 Pull-up Enable Register Clear PUERC Write-Only
0x7C Pull-up Enable Register Toggle PUERT Write-Only
0x80 Open Drain Mode Enable Register Read/Write ODMER Read/Write 0x00000000
0x84 Open Drain Mode Enable Register Set ODMERS Write-Only
0x88 Open Drain Mode Enable Register Clear ODMERC Write-Only
0x8C Open Drain Mode Enable Register Toggle ODMERT Write-Only
0x90 Interrupt Enable Register Read/Write IER Read/Write 0x00000000
0x94 Interrupt Enable Register Set IERS Write-Only
0x98 Interrupt Enable Register Clear IERC Write-Only
0x9C Interrupt Enable Register Toggle IERT Write-Only

32058K  AVR32-01/12

ATMEL

176



Table 22-2.  GPIO Register Map

Offset Register Function Name Access Reset value
0xA0 Interrupt Mode Register 0 Read/Write IMRO Read/Write 0x00000000
0xA4 Interrupt Mode Register 0 Set IMROS Write-Only
0xA8 Interrupt Mode Register 0 Clear IMROC Write-Only
OxAC Interrupt Mode Register 0 Toggle IMROT Write-Only
0xBO Interrupt Mode Register 1 Read/Write IMR1 Read/Write 0x00000000
0xB4 Interrupt Mode Register 1 Set IMR1S Write-Only
0xB8 Interrupt Mode Register 1 Clear IMR1C Write-Only
0xBC Interrupt Mode Register 1 Toggle IMR1T Write-Only
1b for each
0xCO0 Glitch Filter Enable Register Read/Write GFER Read/Write implemented
GPIO pin in port
0xC4 Glitch Filter Enable Register Set GFERS Write-Only
0xC8 Glitch Filter Enable Register Clear GFERC Write-Only
0xCC Glitch Filter Enable Register Toggle GFERT Write-Only
0xD0 Interrupt Flag Register Read IFR Read-Only 0x00000000
0xD4 Interrupt Flag Register - - S
0xD8 Interrupt Flag Register Clear IFRC Write-Only
0xDC Interrupt Flag Register - - -
8’;'52‘ RESERVED - - -
2251 Access Types

Each configuration register can be accessed in four different ways. The first address location
can be used to write the register directly. This address can also be used to read the register
value. The following addresses facilitate three different types of write access to the register. Per-
forming a “set” access, all bits written to ‘1’ will be set. Bits written to ‘O’ will be unchanged by the
operation. Performing a “clear” access, all bits written to ‘1’ will be cleared. Bits written to ‘0’ will
be unchanged by the operation. Finally, a toggle access will toggle the value of all bits written to
‘1’. Again all bits written to ‘0’ remain unchanged. Note that for some registers (e.g. IFR), not all
access methods are permitted.

Note that for ports with less than 32 bits, the corresponding control registers will have unused
bits. This is also the case for features that are not implemented for a specific pin. Writing to an
unused bit will have no effect. Reading unused bits will always return 0.

32058K  AVR32-01/12

ATMEL

177



225.2 GPIO Enable Register

Name: GPER

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* P0O-P31: GPIO Enable
0 = A peripheral function controls the corresponding pin.

1 = The GPIO controls the corresponding pin.

AImEl@ 178

32058K  AVR32-01/12



2253 Peripheral Mux Register 0

Name: PMRO

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Peripheral Multiplexer Select bit 0

225.4 Peripheral Mux Register 1

Name: PMR1

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO0-31: Peripheral Multiplexer Select bit 1

{PMR1, PMRO} Selected Peripheral Function
00 A
01 B
10 C
11 D

AImEl@ 179

32058K  AVR32-01/12



2255 Output Driver Enable Register

Name: ODER

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Output Driver Enable
0 = The output driver is disabled for the corresponding pin.

1 = The output driver is enabled for the corresponding pin.

AImEl@ 180

32058K  AVR32-01/12



22.5.6 Output Value Register

Name: OVR

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Output Value
0 = The value to be driven on the I/O line is 0.

1 = The value to be driven on the I/O line is 1.

AImEl@ 181

32058K  AVR32-01/12



22.5.7 Pin Value Register

Name: PVR

Access: Read
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO0-31: Pin Value
0 =The I/O line is at level ‘0.

1 =The I/O line is at level ‘1"

Note that the level of a pin can only be read when GPER is set or interrupt is enabled for the pin.

AImEl@ 182

32058K  AVR32-01/12



22.5.8 Pull-up Enable Register

Name: PUER

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Pull-up Enable
0 = The internal pull-up resistor is disabled for the corresponding pin.

1 = The internal pull-up resistor is enabled for the corresponding pin.

AImEl@ 183

32058K  AVR32-01/12



22.5.9 Open Drain Mode Enable Register

Name: ODMER

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» P0-31: Open Drain Mode Enable
0 = Open drain mode is disabled for the corresponding pin.

1 = Open drain mode is enabled for the corresponding pin.

AImEl@ 184

32058K  AVR32-01/12



22.5.10 Interrupt Enable Register

Name: IER

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Interrupt Enable
0 = Interrupt is disabled for the corresponding pin.

1 = Interrupt is enabled for the corresponding pin.

AImEl@ 185

32058K  AVR32-01/12



22.5.11 Interrupt Mode Register 0

Name: IMRO

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Interrupt Mode Bit 0

22.5.12 Interrupt Mode Register 1

Name: IMR1

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

* PO0-31: Interrupt Mode Bit 1

{IMR1, IMRO} Interrupt Mode
00 Pin Change
01 Rising Edge
10 Falling Edge
11 Reserved

AImEl@ 186

32058K  AVR32-01/12



22.5.13 Glitch Filter Enable Register

Name: GFER

Access: Read, Write, Set, Clear, Toggle
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 11 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Glitch Filter Enable
0 = Glitch filter is disabled for the corresponding pin.

1 = Glitch filter is enabled for the corresponding pin.

NOTE! The value of this register should only be changed when IER is ‘0’. Updating this GFER while interrupt on the corre-
sponding pin is enabled can cause an unintentional interrupt to be triggered.

AImEl@ 187

32058K  AVR32-01/12



22.5.14 Interrupt Flag Register

Name: IFR

Access: Read, Clear
31 30 29 28 27 26 25 24

| P31 | P30 | P29 | P28 | P27 | P26 | P25 | P24 |
23 22 21 20 19 18 17 16

| P23 | P22 | P21 | P20 | P19 | P18 | P17 | P16 |
15 14 13 12 1 10 9 8

| P15 | P14 | P13 | P12 | P11 | P10 | P9 | P8 |
7 6 5 4 3 2 1 0

| P7 | P6 | P5 | P4 | P3 | P2 | P1 | PO |

» PO0-31: Interrupt Flag
0 = An interrupt condition has been detected on the corresponding pin.

1 = No interrupt condition has been detected on the corresponding pin.

The number of interrupt request lines is dependant on the number of 1/O pins on the MCU. Refer to the product specific
data for details. Note also that a bit in the Interrupt Flag register is only valid if the corresponding bit in IER is set.

AImEl@ 188

32058K  AVR32-01/12



22.6 Programming Examples

22.6.1 8-bit LED-Chaser
// Set RO to GPIO base address

mov RO, LO(AVR32 GPIO BASE ADDRESS)
orh RO, HI(AVR32 GPIO BASE ADDRESS)

// Enable GPIO control of pin 0-8
mov R1, OxXFF
st.w RO[AVR32 GPIO GPERS], R1

// Set initial value of port
mov R2, 0x01
st.w RO[AVR32_GPIO_OVRS], R2

// Set up toggle value. Two pins are toggled
// in each round. The bit that is currently set,

// and the next bit to be set.

mov R2, 0x0303
orh R2, 0x0303
loop:
// Only change 8 LSB
mov R3, OxOO0OFF
and R3, R2
st.w RO [AVR32 GPIO OVRT], R3
rol R2

rcall delay
rjmp loop

It is assumed in this example that a subroutine "delay" exists that returns after a given time.

22.6.2 Configuration of USART pins
The example below shows how to configure a peripheral module to control I/O pins. It assumed
in this example that the USART receive pin (RXD) is connected to PC16 and that the USART
transmit pin (TXD) is connected to PC17. For both pins, the USART is peripheral B. In this
example, the state of the GPIO registers is assumed to be unknown. The two USART pins are
therefore first set to be controlled by the GPIO with output drivers disabled. The pins can then be
assured to be tri-stated while changing the Peripheral Mux Registers.

// Set up pointer to GPIO, PORTC
mov RO, LO(AVR32_ GPIO BASE ADDRESS + PORTC OFFSET)
orh RO, HI(AVR32 GPIO BASE ADDRESS + PORTC OFFSET)

// Disable output drivers

AImEl@ 189

32058K  AVR32-01/12



mov R1, 0x0000
orh R1, 0x0003
st.w RO [AVR32 GPIO ODERC], R1

// Make the GPIO control the pins
st.w RO [AVR32 GPIO GPERS], R1

// Select peripheral B on PCl6-PCl7
st.w RO [AVR32 GPIO_ PMROS], R1
st.w RO [GPIO PMR1C], R1

// Enable peripheral control
st.w RO [AVR32 GPIO GPERC], R1

AImEl@ 190

32058K  AVR32-01/12



23. Serial Peripheral Interface (SPI)

Rev: 1.9.9.3
23.1 Features

* Supports Communication with Serial External Devices
— Four Chip Selects with External Decoder Support Allow Communication with Up to 15
Peripherals
— Serial Memories, such as DataFlash and 3-wire EEPROMs
— Serial Peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
— External Co-processors
* Master or Slave Serial Peripheral Bus Interface
— 8- to 16-bit Programmable Data Length Per Chip Select
— Programmable Phase and Polarity Per Chip Select
— Programmable Transfer Delays Between Consecutive Transfers and Between Clock and Data
Per Chip Select
— Programmable Delay Between Consecutive Transfers
— Selectable Mode Fault Detection
* Connection to PDC Channel Capabilities Optimizes Data Transfers
— One Channel for the Receiver, One Channel for the Transmitter
— Next Buffer Support

23.2 Description

The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master” which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.

A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).

The SPI system consists of two data lines and two control lines:
» Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).

» Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master. There may be no more than one slave transmitting data during any particular
transfer.

» Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once for
each bit that is transmitted.

+ Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.

AImEl@ 191

32058K  AVR32-01/12



AT32UC3A

23.3 Block Diagram

Figure 23-1. Block Diagram

A
| ) PDC
eral Bus
[ ] spex
e
! -] o
Power MCK |:| Mos
Manager
SPI Interface P [« ] nPcsomss
A
DIV <—>| |NPCS1
<—>|:| NPCS2
MCK™ Interrupt Control

SPI Interrupt

AImEl@ 192

32058K  AVR32-01/12



23.4 Application Block Diagram

Figure 23-2. Application Block Diagram: Single Master/Multiple Slave Implementation

SPI Master

SPCK

MISO

MOSI

NPCSO

NPCS1

NPCS2

NPCS3

(SPCK

MISO

MOSI

—X NC

32058K  AVR32-01/12

NSS

Slave 0

(SPCK

MISO

MOSI

NSS

Slave 1

.

(SPCK

MISO

MOSI

ATMEL

\NSS

Slave 2

.

193



23.5 Signal Description

32058K  AVR32-01/12

Table 23-1.  Signal Description

Type
Pin Name Pin Description Master Slave
MISO Master In Slave Out Input Output
MOSI Master Out Slave In Output Input
SPCK Serial Clock Output Input
NPCS1-NPCS3 Peripheral Chip Selects Output Unused
NPCSO0/NSS Peripheral Chip Select/Slave Select Output Input

ATMEL

194



23.6 Product Dependencies
23.6.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PI1O controllers to assign the SPI pins to their peripheral
functions. To use the local loopback function the SPI pins must be controlled by the SPI.

23.6.2 Power Management

The SPI clock is generated by the Power Manager. Before using the SPI, the programmer must
ensure that the SPI clock is enabled in the Power Manager.

In the SPI description, Master Clock (MCK) is the clock of the peripheral bus to which the SPI is
connected.

23.6.3 Interrupt

The SPI interface has an interrupt line connected to the Interrupt Controller. Handling the SPI
interrupt requires programming the interrupt controller before configuring the SPI.

AImEl@ 195

32058K  AVR32-01/12



23.7 Functional Description

23.7.1 Modes of Operation

23.7.2 Data Transfer

32058K  AVR32-01/12

The SPI operates in Master Mode or in Slave Mode.

Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCSO0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.

If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCSO0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.

The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 23-2 shows the four modes and corresponding parameter settings.

Table 23-2.  SPI Bus Protocol Mode

SPI Mode CPOL NCPHA
0 0 1
1 0 0
2 1 1
3 1 0

Figure 23-3 and Figure 23-4 show examples of data transfers.

AImEl@ 196



Figure 23-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

1 2 3 4 5 6

MSB 6 5 4 3

X se X

MSB 6 5 4 3

X s X ¥

* Not defined, but normally MSB of previous character received.

Figure 23-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)

SPCK cycle (for reference)

SPCK
(CPOL = 0)

SPCK
(CPOL = 1)

MOSI
(from master)

MISO
(from slave)

NSS
(to slave)

32058K  AVR32-01/12

1 2 3 4 5 6

MSB 6 5 4 3

>< LSB ><

X LSB

* Not defined but normally LSB of previous character transmitted.

ATMEL

197



23.7.3 Master Mode Operations

32058K  AVR32-01/12

When configured in Master Mode, the SPI uses the internal programmable baud rate generator
as clock source. It fully controls the data transfers to and from the slave(s) connected to the SPI
bus. The SPI drives the chip select line to the slave and the serial clock signal (SPCK).

The SPI features two holding registers, the Transmit Data Register and the Receive Data Regis-
ter, and a single Shift Register. The holding registers maintain the data flow at a constant rate.

After enabling the SPI, a data transfer begins when the processor writes to the TDR (Transmit
Data Register). The written data is immediately transferred in the Shift Register and transfer on
the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO line
is sampled and shifted in the Shift Register. Transmission cannot occur without reception.

Before writing the TDR, the PCS field must be set in order to select a slave.

If new data is written in TDR during the transfer, it stays in it until the current transfer is com-
pleted. Then, the received data is transferred from the Shift Register to RDR, the data in TDR is
loaded in the Shift Register and a new transfer starts.

The transfer of a data written in TDR in the Shift Register is indicated by the TDRE bit (Transmit
Data Register Empty) in the Status Register (SR). When new data is written in TDR, this bit is
cleared. The TDRE bit is used to trigger the Transmit PDC channel.

The end of transfer is indicated by the TXEMPTY flag in the SR register. If a transfer delay (DLY-
BCT) is greater than O for the last transfer, TXEMPTY is set after the completion of said delay.
The master clock (MCK) can be switched off at this time.

The transfer of received data from the Shift Register in RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SR). When the received data is read, the
RDREF bit is cleared.

If the RDR (Receive Data Register) has not been read before new data is received, the Overrun
Error bit (OVRES) in SR is set. When this bit is set the SPI will continue to update RDR when
data is received, overwriting the previously received data. The user has to read the status regis-
ter to clear the OVRES bit.

Figure 23-5 on page 199 shows a block diagram of the SPI when operating in Master Mode. Fig-
ure 23-6 on page 200 shows a flow chart describing how transfers are handled.

AImEl@ 198



23.7.3.1 Master Mode Block Diagram

Figure 23-5. Master Mode Block Diagram

| FDIV I

SPI_CSRO0..3
| SCBR
MCK | |
Baud Rate Generator
MCK/IN ____ |1
SPI
Clock
SPI_CSRO..3
BITS SPI_RDR —>1 RDRF
NCPHA [ RD _|—{ OVRES
CPOL T
|
MISO| I LSB Shift Register MSB
SPI_TDR
[T —>| _TDRE_ |
SPI_CSRO..3
CSART SPI_RDR
| | > PCS
SPLVR PCSDEC
PCS Current
L 1o Peripheral
SPI_TDR N
PCS
|
|~
| MSTR I
MODF
NPCSO0 | I O
MODFDIS

32058K  AVR32-01/12

ATMEL

199



AT32UC3A

23.7.3.2 Master Mode Flow Diagram

Figure 23-6. Master Mode Flow Diagram S

| SPI Enable | - NPCS defines the current Chip Select
| - CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select
- When NPCS is OxF, CSAAT is 0.

Fixed
peripheral

Variable
peripheral

Fixed
ipheral
periphera SPI_TDR(PCS) SPI_MR(PCS)
=NPCS ? =NPCS ?
Variable
1 peripheral

NPCS = SPI_TDR(PCS) | | NPCS = SPI_MR(PCS) | | NPCS = OxF | | NPCS = OxF |
| Delay DLYBCS | | Delay DLYBCS |

| NPCS = SPI_TDR(PCS) | NPCS = SPI_MR(PCS),

SPI_TDR(PCS

Il 7
Delay DLYBS
T

'

Serializer = SPI_TDR(TD)
E=1

!

Data Transfer

!

SPI_RDR(RD) = Serializer
RDRF =1

b

Delay DLYBCT

| NPCS = OxF |

!

| Delay DLYBCS |

AImEl@ 200

32058K  AVR32-01/12



23.7.3.3

23.7.3.4

Clock Generation

The SPI Baud rate clock is generated by dividing the Master Clock (MCK) or the Master Clock
divided by 32, by a value between 1 and 255. The selection between Master Clock or Master
Clock divided by 32 is done by the FDIV value set in the Mode Register

This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255*32.

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.

At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.

The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.

Transfer Delays

Figure 23-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:

» The delay between chip selects, programmable only once for all the chip selects by writing the
DLYBCS field in the Mode Register. Allows insertion of a delay between release of one chip
select and before assertion of a new one.

» The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.

» The delay between consecutive transfers, independently programmable for each chip select by
writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on the
same chip select

These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.

Figure 23-7. Programmable Delays

Chip Select 1

Chip Select 2

32058K AVR32-01/12

SPCK

DLYBCS DLYBS %% DLYBCT SS DLYBCT

AImEl@ 201



23.7.3.5 Peripheral Selection

The serial peripherals are selected through the assertion of the NPCSO0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.

The peripheral selection can be performed in two different ways:

* Fixed Peripheral Select: SPI exchanges data with only one peripheral
* Variable Peripheral Select: Data can be exchanged with more than one peripheral

Fixed Peripheral Select is activated by writing the PS bit to zero in MR (Mode Register). In this
case, the current peripheral is defined by the PCS field in MR and the PCS field in TDR have no
effect.

Variable Peripheral Select is activated by setting PS bit to one. The PCS field in TDR is used to
select the current peripheral. This means that the peripheral selection can be defined for each
new data.

The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.

The Variable Peripheral Selection allows buffer transfers with multiple peripherals without repro-
gramming the Mode Register. Data written in TDR is 32 bits wide and defines the real data to be
transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit wide
buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the
SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI lines with
the chip select configuration registers. This is not the optimal means in term of memory size for
the buffers, but it provides a very effective means to exchange data with several peripherals
without any intervention of the processor.

23.7.3.6 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCS-
DEC bit at 1 in the Mode Register (MR).

When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.

When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).

As the SPI sets a default value of OxF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.

The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0to 3,4to 7,8 to 11 and 12 to 14.

AImEl@ 202

32058K AVR32-01/12



23.7.3.7 Peripheral Deselection

When operating normally, as soon as the transfer of the last data written in TDR is completed,
the NPCS lines all rise. This might lead to runtime error if the processor is too long in responding
to an interrupt, and thus might lead to difficulties for interfacing with some serial peripherals
requiring the chip select line to remain active during a full set of transfers.

To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.

Figure 23-8 shows different peripheral deselection cases and the effect of the CSAAT bit.

Figure 23-8. Peripheral Deselection
CSAAT =0 CSAAT =1

TDRE | |
DLYBCT DLYBCT
NPCSI0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS=A
Write SPI_TDR i 1
TDRE | |
DLYBCT DLYBCT
NPCSI0..3] A | A A A A
DLYBCS DLYBCS
PCS=A PCS = A
Write SPI_TDR 1 1
TDRE |
DLYBCT DLYBCT
NPCSI0..3] A B A B
DLYBCS DLYBCS
PCS=B PCS =B
Write SPI_TDR 1 1

AImEl@ 203

32058K AVR32-01/12



23.7.3.8 Mode Fault Detection

A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCSO/NSS signal. NPCS0, MOSI, MISO and SPCK must be con-
figured in open-drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.

When a mode fault is detected, the MODF bit in the SR is set until the SR is read and the SPl is
automatically disabled until re-enabled by writing the SPIEN bit in the CR (Control Register) at 1.

By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (MR).

23.7.4 SPI Slave Mode

32058K AVR32-01/12

When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).

The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
defined by the BITS field of the Chip Select Register 0 (CSRO0). These bits are processed follow-
ing a phase and a polarity defined respectively by the NCPHA and CPOL bits of the CSRO. Note
that BITS, CPOL and NCPHA of the other Chip Select Registers have no effect when the SPI is
programmed in Slave Mode.

The bits are shifted out on the MISO line and sampled on the MOSI line.

When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDREF bit rises. If RDRF is already high when the data is transferred, the Overrun bit
rises and the data transfer to RDR is aborted.

When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (TDR), the last data received is transferred. If no
data has been received since the last reset, all bits are transmitted low, as the Shift Register
resets at 0.

When a first data is written in TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in TDR until a transfer occurs, i.e. NSS falls and
there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in TDR is
transferred in the Shift Register and the TDRE bit rises. This enables frequent updates of critical
variables with single transfers.

Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in TDR since the last load
from TDR to the Shift Register, the Shift Register is not modified and the last received character
is retransmitted.

Figure 23-9 shows a block diagram of the SPI when operating in Slave Mode.

AImEl@ 204



AT32UC3A

Figure 23-9. Slave Mode Functional Block Diagram

NSS | I {>¢ SPI
Clock

[ sPiEN ]
[ SPIENS
[spDis_]
SPI_CSRO
BITS SPI_RDR LI RDRF
NCPHA [ RD |— OVRES

CPOL T
I
MSB

MOSI | I LSB Shift Register I |MISO

A

SPI_TDR

[ FLoAD } | D —| TDRE |

AImEl@ 205

32058K AVR32-01/12



23.8 Serial Peripheral Interface (SPI) User Interface

Table 23-3.  SPI Register Mapping

Offset Register Register Name Access Reset
0x00 Control Register CR Write-only -—-
0x04 Mode Register MR Read/Write 0x0
0x08 Receive Data Register RDR Read-only 0x0
0x0C Transmit Data Register TDR Write-only -
0x10 Status Register SR Read-only 0x000000F0
0x14 Interrupt Enable Register IER Write-only -
0x18 Interrupt Disable Register IDR Write-only -
0x1C Interrupt Mask Register IMR Read-only 0x0
0x20 - 0x2C Reserved

0x30 Chip Select Register 0 CSRO Read/Write 0x0
0x34 Chip Select Register 1 CSR1 Read/Write 0x0
0x38 Chip Select Register 2 CSR2 Read/Write 0x0
0x3C Chip Select Register 3 CSR3 Read/Write 0x0

AImEl@ 206

32058K AVR32-01/12



23.8.1 SPI Control Register

Name: CR

Access Type: Write-only
31 30 29 28 27 26 25 24

| - | - - - | - - | - | LASTXFER |
23 22 21 20 19 18 17 16

I — - T - S T B
15 14 13 12 11 10 9 8

I — - S S IR R
7 6 5 4 3 2 1 0

| SwrsT | — - - | - — | spibis | sPEN |

* SPIEN: SPI Enable
0 = No effect.

1 = Enables the SPI to transfer and receive data.

* SPIDIS: SPI Disable
0 = No effect.

1 = Disables the SPI.

As soon as SPDIS is set, SPI finishes its transfer.

All pins are set in input mode and no data is received or transmitted.

If a transfer is in progress, the transfer is finished before the SPI is disabled.

If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.

* SWRST: SPI Software Reset

0 = No effect.

1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
The SPl is in slave mode after a software reset.
PDC channels are not affected by software reset.

* LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

32058K AVR32-01/12

ATMEL

207



23.8.2 SPI Mode Register

Name: MR

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCS |
23 22 21 20 19 18 17 16

- - S I T |
15 14 13 12 11 10 9 8

- - S IS R R — ]
7 6 5 4 3 2 1 0

| LLB — — | mopbFDis | FDiv [ Pcspec | PS MSTR |

* MSTR: Master/Slave Mode
0 = SPlis in Slave mode.

1 = SPl is in Master mode.

* PS: Peripheral Select

0 = Fixed Peripheral Select.
1 = Variable Peripheral Select.

* PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.

1 = The four chip select lines are connected to a 4- to 16-bit decoder.

When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:

CSRO defines peripheral chip select signals 0 to 3.

CSR1 defines peripheral chip select signals 4 to 7.

CSR2 defines peripheral chip select signals 8 to 11.

CSRa3 defines peripheral chip select signals 12 to 14.

* FDIV: Clock Selection

0 = The SPI operates at MCK.
1 = The SPI operates at MCK/32.

* MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.

1 = Mode fault detection is disabled.

* LLB: Local Loopback Enable
0 = Local loopback path disabled.

1 = Local loopback path enabled.

LLB controls the local loopback on the data serializer for testing in Master Mode only. MISO is internally connected to

MOSI.

32058K AVR32-01/12

ATMEL

208



* PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).

If PCSDEC = 0:
PCS = xxx0 NPCS[3:0] = 1110
PCS = xx01 NPCSJ[3:0] = 1101
PCS = x011 NPCS[3:0] = 1011
PCS = 0111 NPCS[3:0] = 0111
PCS = 1111 forbidden (no peripheral is selected)

(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.

* DLYBCS: Delay Between Chip Selects

This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-over-
lapping chip selects and solves bus contentions in case of peripherals having long data float times.

If DLYBCS is less than or equal to six, six MCK periods (or 6*N MCK periods if FDIV is set) will be inserted by default.

Otherwise, the following equation determines the delay:

If FDIV is O:
Delay Between Chip Selects = 2LYBCS
MCK
If FDIV is 1:
Delay Between Chip Selects = 2EYBESxN
MCK

AImEl@ 209

32058K AVR32-01/12



23.8.3 SPI Receive Data Register

Name: RDR

Access Type: Read-only
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

I - — PGS |
15 14 13 12 11 10 9 8

I RD |
7 6 5 4 3 2 1 0

I RD |

* RD: Receive Data

Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.

* PCS: Peripheral Chip Select

In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read

zZero.

32058K AVR32-01/12

ATMEL

210



23.84 SPI Transmit Data Register

Name: TDR

Access Type: Write-only
31 30 29 28 27 26 25 24

| — | — — - | - - — LASTXFER |
23 22 21 20 19 18 17 16

| - | - - - | PCS |
15 14 13 12 11 10 9 8

| D |
7 6 5 4 3 2 1 0

| D |

* TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the

transmit data register in a right-justified format.

PCS: Peripheral Chip Select

This field is only used if Variable Peripheral Select is active (PS = 1).

If PCSDEC = 0:
PCS = xxx0
PCS = xx01
PCS =x011
PCS = 0111
PCS = 1111
(x = don’t care)

If PCSDEC = 1:

NPCS[3:0] = 1110
NPCS[3:0] = 1101
NPCS[3:0] = 1011
NPCS[3:0] = 0111

forbidden (no peripheral is selected)

NPCS[3:0] output signals = PCS

* LASTXFER: Last Transfer

0 = No effect.

1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.

This field is only used if Variable Peripheral Select is active (PS = 1).

32058K AVR32-01/12

ATMEL

211



23.8.5 SPI Status Register

Name: SR

Access Type: Read-only
31 30 29 28 27 26 25 24

. - rr - ¢ - - r - r - £ - [ - 1}
23 22 21 20 19 18 17 16

. - r - ¢ - - - [ - [ - [ sPEns |
15 14 13 12 11 10 9 8

| - | - | - | - | - | - | TXEMPTY [ NSSR |
7 6 5 4 3 2 1 0

| txBUFE | RxBUFF | ENDTX | ENDRX | oOvrRes | wmMobF | TDRE | RDRF |

* RDRF: Receive Data Register Full
0 = No data has been received since the last read of RDR

1 = Data has been received and the received data has been transferred from the serializer to RDR since the last read of
RDR.

» TDRE: Transmit Data Register Empty
0 = Data has been written to TDR and not yet transferred to the serializer.

1 = The last data written in the Transmit Data Register has been transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.

» MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SR.

1 = A Mode Fault occurred since the last read of the SR.

* OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SR.

1 = An overrun has occurred since the last read of SR.
An overrun occurs when RDR is loaded at least twice from the serializer since the last read of the RDR.

* ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

* ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

* RXBUFF: RX Buffer Full
0 = RCR or RNCR has a value other than 0.

1 = Both RCR and RNCR has a value of 0.

* TXBUFE: TX Buffer Empty
0 = TCR or TNCR has a value other than 0.

AImEl@ 212

32058K AVR32-01/12



1 = Both TCR and TNCR has a value of 0.

* NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.

1 = Arising edge occurred on NSS pin since last read.

« TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in TDR.

1 = TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of such
delay.

* SPIENS: SPI Enable Status
0 = SPIl is disabled.

1 = SPl is enabled.

AImEl@ 213

32058K AVR32-01/12



23.8.6 SPI Interrupt Enable Register

Name: IER

Access Type: Write-only
31 30 29 28 27 26 25 24

r - r - - [ - [ - - - [ - ]
23 22 21 20 19 18 17 16

r - r - - [ - [ - - - [ - ]
15 14 13 12 11 10 9 8

| - | - | - | - | - - | TXEMPTY [ NSSR |
7 6 5 4 3 2 1 0

| T™BUFE | RxBUFF | ENDTX | ENDRX | OVRES MODF | TDRE | RDRF |

RDRF: Receive Data Register Full Interrupt Enable

TDRE: SPI Transmit Data Register Empty Interrupt Enable
MODF: Mode Fault Error Interrupt Enable

OVRES: Overrun Error Interrupt Enable

ENDRX: End of Receive Buffer Interrupt Enable

ENDTX: End of Transmit Buffer Interrupt Enable

RXBUFF: Receive Buffer Full Interrupt Enable

TXBUFE: Transmit Buffer Empty Interrupt Enable

TXEMPTY: Transmission Registers Empty Enable

NSSR: NSS Rising Interrupt Enable

0 = No effect.

1 = Enables the corresponding interrupt.

32058K AVR32-01/12

ATMEL

214



23.8.7 SPI Interrupt Disable Register

Name: IDR

Access Type: Write-only
31 30 29 28 27 26 25 24

r - r - - [ - [ - - - [ - ]
23 22 21 20 19 18 17 16

r - r - - [ - [ - - - [ - ]
15 14 13 12 11 10 9 8

| - | - | - | - | - - | TXEMPTY [ NSSR |
7 6 5 4 3 2 1 0

| T™BUFE | RxBUFF | ENDTX | ENDRX | OVRES MODF | TDRE | RDRF |

RDRF: Receive Data Register Full Interrupt Disable

TDRE: SPI Transmit Data Register Empty Interrupt Disable
MODF: Mode Fault Error Interrupt Disable

OVRES: Overrun Error Interrupt Disable

ENDRX: End of Receive Buffer Interrupt Disable

ENDTX: End of Transmit Buffer Interrupt Disable

RXBUFF: Receive Buffer Full Interrupt Disable

TXBUFE: Transmit Buffer Empty Interrupt Disable

TXEMPTY: Transmission Registers Empty Disable

NSSR: NSS Rising Interrupt Disable

0 = No effect.

1 = Disables the corresponding interrupt.

32058K AVR32-01/12

ATMEL

215



23.8.8 SPI Interrupt Mask Register

Name: IMR

Access Type: Read-only
31 30 29 28 27 26 25 24

r - r - - [ - [ - - - [ - ]
23 22 21 20 19 18 17 16

r - r - - [ - [ - - - [ - ]
15 14 13 12 11 10 9 8

| - | - | - | - | - - | TXEMPTY [ NSSR |
7 6 5 4 3 2 1 0

| T™BUFE | RxBUFF | ENDTX | ENDRX | OVRES MODF | TDRE | RDRF |

» RDRF: Receive Data Register Full Interrupt Mask

e TDRE: SPI Transmit Data Register Empty Interrupt Mask
» MODF: Mode Fault Error Interrupt Mask

» OVRES: Overrun Error Interrupt Mask

* ENDRX: End of Receive Buffer Interrupt Mask

* ENDTX: End of Transmit Buffer Interrupt Mask
* RXBUFF: Receive Buffer Full Interrupt Mask

* TXBUFE: Transmit Buffer Empty Interrupt Mask
* TXEMPTY: Transmission Registers Empty Mask
* NSSR: NSS Rising Interrupt Mask

0 = The corresponding interrupt is not enabled.

1 = The corresponding interrupt is enabled.

32058K AVR32-01/12

ATMEL

216



23.8.9 SPI Chip Select Register

Name: CSRO... CSR3

Access Type: Read/Write
31 30 29 28 27 26 25 24

| DLYBCT |
23 22 21 20 19 18 17 16

| DLYBS |
15 14 13 12 11 10 9 8

| SCBR |
7 6 5 4 3 2 1 0

| BITS CSAAT CSNAAT NCPHA cPoL |

» CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.

1 = The inactive state value of SPCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.

* NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.

e CSNAAT: Chip Select Not Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is acheived

1 = The Peripheral Chip Select Line rises after every transfer

CSNAAT can be used to force the Peripheral Chip Select Line to go inactive after every transfer. This allows successful
interfacing to SPI slave devices that require this behavior.

» CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.

1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
» BITS: Bits Per Transfer

The BITS field determines the number of data bits transferred. Reserved values should not be used, see Table 23-4 on
page 218.

AImEl@ 217

32058K AVR32-01/12



Table 23-4. BITS, Bits Per Transfer

BITS Bits Per Transfer
0000 8
0001 9
0010 10
0011 11
0100 12
0101 13
0110 14
0111 15
1000 16
1001 Reserved
1010 Reserved
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

* SCBR: Serial Clock Baud Rate

In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:

If FDIV is O:
SPCK Baudrate = MCK
SCBR
If FDIV is 1:
SPCK Baudrate = __MCK__
(N x SCBR)

Note: N =32

Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.

» DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.

When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.

AImEl@ 218

32058K AVR32-01/12



Otherwise, the following equations determine the delay:

If FDIV is 0:
Delay Before SPCK = DLYBS
MCK
If FDIV is 1:
N x DLYBS
Delay Bef PCK = —/———=
elay Before SPC CK

Note: N =232

» DLYBCT: Delay Between Consecutive Transfers

This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.

When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.

Otherwise, the following equation determines the delay:

If FDIV is 0:

Delay Between Consecutive Transfers = 32xDLYBCT , SCER

MCK 2MCK
If FDIV is 1:
. 32 xN xDLYBCT , NxSCBR
Delay Bet tive Transfers = +
elay Between Consecutive Transfers MCK SMCK

N =32

AImEl@ 219

32058K AVR32-01/12



24. Two-Wire Interface (TWI)

21.1.0
24.1 Features

» Compatible with Atmel Two-wire Interface Serial Memory and 12C Compatible Devices("
* One, Two or Three Bytes for Slave Address
* Sequential Read-write Operations
* Master, Multi-master and Slave Mode Operation
* Bit Rate: Up to 400 Kbits
* General Call Supported in Slave mode
* Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers in
Master Mode Only
— One Channel for the Receiver, One Channel for the Transmitter
— Next Buffer Support
Note: 1. See Table 24-1 below for details on compatibility with 1°C Standard.

24.2 Overview

The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made
up of one clock line and one data line with speeds of up to 400 Kbits per second, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus Serial
EEPROM and I?°C compatible device such as Real Time Clock (RTC), Dot Matrix/Graphic LCD
Controllers and Temperature Sensor, to name but a few. The TWI is programmable as a master
or a slave with sequential or single-byte access. Multiple master capability is supported. Arbitra-
tion of the bus is performed internally and puts the TWI in slave mode automatically if the bus
arbitration is lost.

A configurable baud rate generator permits the output data rate to be adapted to a wide range of
core clock frequencies.

Below, Table 24-1 lists the compatibility level of the Atmel Two-wire Interface in Master Mode and
a full 1>’C compatible device.

Table 24-1.  Atmel TWI compatibility with 1°C Standard

I2C Standard Atmel TWI
Standard Mode Speed (100 KHz) Supported
Fast Mode Speed (400 KHz) Supported
7 or 10 bits Slave Addressing Supported
START BYTE(" Not Supported
Repeated Start (Sr) Condition Supported
ACK and NACK Management Supported
Slope control and input filtering (Fast mode) Not Supported
Clock stretching Supported

Note: 1. START + b000000001 + Ack + Sr

AImEl@ 220

32058K AVR32-01/12



24.3 List of Abbreviations

24.4 Block Diagram

Figure 24-1. Block Diagram

Table 24-2.  Abbreviations

Abbreviation Description
TWI Two-wire Interface
A Acknowledge
NA Non Acknowledge

Stop

Start
Sr Repeated Start
SADR Slave Address
ADR Any address except SADR
R Read
w Write
Peripheral Bus

Bridge
«— > ] ] twex
PIO
Two-wire > 4—'|:| TWD
o MCK Interface
e > INTC

32058K AVR32-01/12

ATMEL

221



AT32UC3A

24.5 Application Block Diagram

Figure 24-2. Application Block Diagram

VDD
Rp Rp
TWD
Host with ® >
TWI
Interface | 1WCK >
Atmel TWI 5 I>)C LCD I2C Temp.
Serial EEPROM FCRTC Controller Sensor
Slave 1 Slave 2 Slave 3 Slave 4
Rp: Pull up value as given by the I1>)C Standard
24.6 1/0 Lines Description
Table 24-3.  1/O Lines Description
Pin Name Pin Description Type
TWD Two-wire Serial Data Input/Output
TWCK Two-wire Serial Clock Input/Output

24.7 Product Dependencies

24.7.1

24.7.2

32058K AVR32-0.

I/O Lines

Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 24-2 on page 222). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-col-
lector to perform the wired-AND function.

TWD and TWCK pins may be multiplexed with GPIO lines. To enable the TWI, the programmer
must perform the following steps:
* Program the GPIO controller to:

— Dedicate TWD and TWCK as peripheral lines.

— Define TWD and TWCK as open-drain.

Power Management

1/12

The TWI clock is generated by the Power Manager (PM). Before using the TWI, the programmer
must ensure that the TWI clock is enabled in the PM.

In the TWI description, Master Clock (MCK) is the clock of the peripheral bus to which the TWI is
connected.

AImEl@ 222



24.7.3 Interrupt

The TWI interface has an interrupt line connected to the Interrupt Controller (INTC). In order to
handle interrupts, the INTC must be programmed before configuring the TWI.

24.8 Functional Description
24.8.1 Transfer Format

The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
24-4),

Each transfer begins with a START condition and terminates with a STOP condition (see Figure
24-3).

* A high-to-low transition on the TWD line while TWCK is high defines the START condition.

* A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.

Figure 24-3. START and STOP Conditions

Start Address R/W Ack Data Ack Data Ack Stop

24.9 Modes of Operation
The TWI has six modes of operations:
» Master transmitter mode
» Master receiver mode
* Multi-master transmitter mode
» Multi-master receiver mode
» Slave transmitter mode
+ Slave receiver mode
These modes are described in the following chapters.

AImEl@ 223

32058K AVR32-01/12



24.10 Master Mode
24.10.1 Definition

The Master is the device which starts a transfer, generates a clock and stops it.

24.10.2 Application Block Diagram

Figure 24-5. Master Mode Typical Application Block Diagram

VDD
Rp Rp
) TWD
Host with Y ¢ >
TWI
Interface TWCK ° >
Atmel TWI 12C RTC [)C LCD IC Temp.
Serial EEPROM Controller Sensor
Slave 1 Slave 2 Slave 3 Slave 4

Rp: Pull up value as given by the I1>)C Standard

24.10.3 Programming Master Mode

The following registers have to be programmed before entering Master mode:

1. DADR (+ IADRSZ + |ADR if a 10 bit device is addressed): The device address is used to
access slave devices in read or write mode.

2. CKDIV + CHDIV + CLDIV: Clock Waveform.
3. SVDIS: Disable the slave mode.
4. MSEN: Enable the master mode.

24.10.4 Master Transmitter Mode

After the master initiates a Start condition when writing into the Transmit Holding Register, THR,
it sends a 7-bit slave address, configured in the Master Mode register (DADR in MMR), to notify
the slave device. The bit following the slave address indicates the transfer direction, 0 in this
case (MREAD = 0 in MMR).

The TWI transfers require the slave to acknowledge each received byte. During the acknowl-
edge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK in the status register if the slave does not acknowledge the byte. As
with the other status bits, an interrupt can be generated if enabled in the interrupt enable register
(IER). If the slave acknowledges the byte, the data written in the THR, is then shifted in the inter-
nal shifter and transferred. When an acknowledge is detected, the TXRDY bit is set until a new
write in the THR. When no more data is written into the THR, the master generates a stop condi-
tion to end the transfer. The end of the complete transfer is marked by the TXCOMP bit set to
one. See Figure 24-6, Figure 24-7, and Figure 24-8 on page 225.

TXRDY is used as Transmit Ready for the PDC transmit channel.

AImEl@ 224

32058K AVR32-01/12



AT32UC3A

Figure 24-6. Master Write with One Data Byte

Txcomp |, B
TXRDY_l \
erte THR (DATA) STOP sent automaticaly

(ACK received and TXRDY = 1)

Figure 24-7. Master Write with Multiple Data Byte

TXCOMP |, [

TXRDY ]&\ [ . [T |:

Write THR (Data n) Write THR (Data n+1) Write THR (Data n+x) STOP sent automaticaly
Last data sent (ACK received and TXRDY = 1)

Figure 24-8. Master Write with One Byte Internal Address and Multiple Data Bytes

o SX 5o XWX X moRr e X X B XX ) X B e X X o X P

TXCOMP | [
TXRDY | \ 1 """ [
erte THR (Data n) Write THR (Data n+1) ~ Write THR (Data n+x) STOP sent automaticaly

Last data sent  (ACK received and TXRDY = 1)

24.10.5 Master Receiver Mode

The read sequence begins by setting the START bit. After the start condition has been sent, the
master sends a 7-bit slave address to notify the slave device. The bit following the slave address
indicates the transfer direction, 1 in this case (MREAD = 1 in MMR). During the acknowledge
clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull it
down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK bit in the status register if the slave does not acknowledge the byte.

If an acknowledge is received, the master is then ready to receive data from the slave. After data
has been received, the master sends an acknowledge condition to notify the slave that the data
has been received except for the last data, after the stop condition. See Figure 24-9. When the

AImEl@ 225

32058K AVR32-01/12



RXRDY bit is set in the status register, a character has been received in the receive-holding reg-
ister (RHR). The RXRDY bit is reset when reading the RHR.

When a single data byte read is performed, with or without internal address (IADR), the START
and STOP bits must be set at the same time. See Figure 24-9. When a multiple data byte read is
performed, with or without IADR, the STOP bit must be set after the next-to-last data received.
See Figure 24-10. For Internal Address usage see “Internal Address” on page 226.

Figure 24-9. Master Read with One Data Byte

o XX R XXX o XX
TXCOMP | %, [

Write START &

RXRDY STOP Bit _l/

Read RHR

Figure 24-10. Master Read with Multiple Data Bytes

LN E

TXCOMP | %,
Write START Bit l
RXRDY | |
t t 4 t
Read RHR Read RHR Read RHR Read RHR
DATA n DATA (n+1) DATA (n+m)-1 DATA (n+m)

Write STOP Bit
after next-to-last data read

RXRDY is used as Receive Ready for the PDC receive channel.

24.10.6 Internal Address

The TWI interface can perform various transfer formats: Transfers with 7-bit slave address
devices and 10-bit slave address devices.

24.10.6.1  7-bit Slave Addressing

32058K AVR32-01/12

When Addressing 7-bit slave devices, the internal address bytes are used to perform random
address (read or write) accesses to reach one or more data bytes, within a memory page loca-
tion in a serial memory, for example. When performing read operations with an internal address,
the TWI performs a write operation to set the internal address into the slave device, and then
switch to Master Receiver mode. Note that the second start condition (after sending the IADR) is
sometimes called “repeated start” (Sr) in 12C fully-compatible devices. See Figure 24-12. See
Figure 24-11 and Figure 24.11 for Master Write operation with internal address.

The three internal address bytes are configurable through the Master Mode register (MMR).

AImEl@ 226



If the slave device supports only a 7-bit address, i.e. no internal address, IADRSZ must be set to
0.

n the figures below the following abbreviations are used:|

S Start

* Sr Repeated Start
P Stop

W Write

*R Read

A Acknowledge
*N Not Acknowledge
* DADR Device Address

* IADR Internal Address

Figure 24-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte

Three bytes internal address
rwp X5 X_oaor W X A imorestep A X moriise A X aoraa) ) A X _omn_KAX P

Two bytes internal address
Twp X s X oaor X w X A X 1aoriisg) )X A X or:0) X A X DATA X A X P >

One byte internal address

o X5 Xm0 SR X X oim XA

Figure 24-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte

Three bytes internal address
o X8 X 0aoR X w X A Xaor23:16)X A X nor(is:8) X A X morer:0) X A X st X AR X R X A )

oA XN X P )
Two bytes internal address
P € G € & CEE) €Y G €9 € G € €Y S €) &

One byte internal address

o X5 X_oror XXX rra X XX X X o XKD

AImEl@ 227

32058K AVR32-01/12



24.10.6.2

10-bit Slave Addressing

For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and
set the other slave address bits in the internal address register (IADR). The two remaining Inter-
nal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave
Addressing.

Example: Address a 10-bit device:
(10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)
Program IADRSZ =1,

1.

2. Program DADR with 11 11 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)
3. Program IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)

Figure 24.11 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates
the use of internal addresses to access the device.

24.11 Internal Address Usage Using the Peripheral DMA Controller (PDC)

W
R

S
T S
A . [ T
R  Device T FIRST SECOND 0
T  Address E WORD ADDRESS WORD ADDRESS DATA P
D_l_l_l |0 |_I—| | | LI I B B | | | LI I B B | | | LI I B B | | |_|
1 T T | T T | T T |

M LRA M A LA A

S S/ C S Cc SC Cc

B BWK B K B K

The use of the PDC significantly reduces the CPU load.

To assure correct implementation, respect the following programming sequences:

24.11.1 Data Transmit with the PDC

1.

Al

Initialize the transmit PDC (memory pointers, size, etc.).
Configure the master mode (DADR, CKDIV, etc.).

Start the transfer by setting the PDC TXTEN bit.

Wait for the PDC end TX flag.

Disable the PDC by setting the PDC TXDIS bit.

24.11.2 Data Receive with the PDC

32058K AVR32-01/12

1.

o kN

Initialize the receive PDC (memory pointers, size - 1, etc.).
Configure the master mode (DADR, CKDIV, etc.).

Start the transfer by setting the PDC RXTEN bit.

Wait for the PDC end RX flag.

Disable the PDC by setting the PDC RXDIS bit.

ATMEL

228



24.11.3 Read-write Flowcharts

32058K AVR32-01/12

The following flowcharts shown in Figure 24-13 to Figure 24-18 on page 234 give examples for
read and write operations. A polling or interrupt method can be used to check the status bits.
The interrupt method requires that the interrupt enable register (IER) be configured first.

Figure 24-13. TWI Write Operation with Single Data Byte without Internal Address.

' BEGIN '

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)
- Transfer direction bit
Write ==> bit MREAD = 0

Load Transmit register
TWI_THR = Data to send

<

Read Status register

No
TXRDY =1?

Yes

Read Status register

Yes

Transfer finished

AImEl@ 229



Figure 24-14. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)
- Internal address size (IADRSZ)
- Transfer direction bit
Write ==> bit MREAD = 0

Set the internal address
TWI_IADR = address

Load transmit register
TWI_THR = Data to send

Read Status register

No
TXRDY =1?

Yes |«

Read Status register

No
Yes

Transfer finished

| AI“IE'.@ 230

32058K AVR32-01/12



Figure 24-15. TWI Write Operation with Multiple Data Bytes with or without Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Write ==> bit MREAD = 0

No

Internal address size = 0?

v

Set the internal address
TWI_IADR = address

Yes

Load Transmit register
TWI_THR = Data to send

Read Status register

TWI_THR = data to send

Data to send?

Yes
Read Status register
Yes
No
END
— ATTEL 231
32058K AVR32-01/12 I ©



Figure 24-16. TWI Read Operation with Single Data Byte without Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Transfer direction bit
Read ==> bit MREAD =1

Start the transfer
TWI_CR = START | STOP

Read status register

No
Yes
Read Receive Holding Register
Read Status register
No

AIMEL 232

32058K AVR32-01/12 I ©




Figure 24-17. TWI Read Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Internal address size (IADRSZ)
- Transfer direction bit
Read ==> bit MREAD =1

Set the internal address
TWI_IADR = address

Start the transfer
TWI_CR = START | STOP

Read Status register

No
Yes
Read Receive Holding register
Read Status register
No

AIMEL 233

32058K AVR32-01/12 I ©




AT32UC3A

Figure 24-18. TWI Read Operation with Multiple Data Bytes with or without Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)

Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Read ==> bit MREAD = 1

Internal address size = 0?

Set the internal address
TWI_IADR = address

Yes

Start the transfer
TWLCIF = START
|

Read Status register

Yes

Read Receive Holding register (TWI_RHR)

No Last data to read

but one?

Stop the transfer
TWI_CR = STOP

Read Status register

Yes

Read Receive Holding register (TWI_RHR)

Read status register

END

AIMEL 234

32058K AVR32-01/12 I ©



24.12 Multi-master Mode
24.12.1 Definition

More than one master may handle the bus at the same time without data corruption by using
arbitration.

Arbitration starts as soon as two or more masters place information on the bus at the same time,
and stops (arbitration is lost) for the master that intends to send a logical one while the other
master sends a logical zero.

As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to
detect a stop. When the stop is detected, the master who has lost arbitration may put its data on
the bus by respecting arbitration.

Arbitration is illustrated in Figure 24-20 on page 236.
24.12.2 Different Multi-master Modes

Two multi-master modes may be distinguished:

1. TWIlis considered as a Master only and will never be addressed.
2. TWI may be either a Master or a Slave and may be addressed.
Note:  Arbitration is supported in both Multi-master modes.

24.12.2.1  TWI as Master Only

In this mode, TWI is considered as a Master only (MSEN is always at one) and must be driven
like a Master with the ARBLST (ARBitration Lost) flag in addition.

If arbitration is lost (ARBLST = 1), the programmer must reinitiate the data transfer.

If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the
TWI automatically waits for a STOP condition on the bus to initiate the transfer (see Figure 24-
19 on page 236).
Note:  The state of the bus (busy or free) is not indicated in the user interface.

24.12.2.2 TWI as Master or Slave

The automatic reversal from Master to Slave is not supported in case of a lost arbitration.

Then, in the case where TWI may be either a Master or a Slave, the programmer must manage
the pseudo Multi-master mode described in the steps below.

1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform Slave Access (if
TWI is addressed).
2. If TWI has to be set in Master mode, wait until TXCOMP flag is at 1.

3. Program Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START +
Write in THR).

4. As soon as the Master mode is enabled, TWI scans the bus in order to detect if it is busy
or free. When the bus is considered as free, TWI initiates the transfer.

5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration
becomes relevant and the user must monitor the ARBLST flag.

6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave
mode in the case where the Master that won the arbitration wanted to access the TWI.

AImEl@ 235

32058K AVR32-01/12



7. If TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the

Slave mode.
Note: In the case where the arbitration is lost and TWI is addressed, TWI will not acknowledge even if it
is programmed in Slave mode as soon as ARBLST is set to 1. Then, the Master must repeat
SADR.

Figure 24-19. Programmer Sends Data While the Bus is Busy

: Bus is busy
1

TWI DATA transfer | Transfer is kept '|

A transfer is programmed Bus is considered as free
(DADR + W + START + Write THR) Transfer is initiated

Figure 24-20. Arbitration Cases

ARBLST- - === === === - - | |- ------------- E-----' ---------------------

: Bus is busy iBus s free :
TWI DATA transfer | | | Transfer is kept 1
A transfer is programmed Transfer is stopped T Bus is considered as free
i Transfer is programmed again Transfer is initiated
(DADR +W + START + Write THR) (DADR + W * START * Writ THR)

The flowchart shown in Figure 24-21 on page 237 gives an example of read and write operations
in Multi-master mode.

AImEl@ 236

32058K AVR32-01/12



Figure 24-21.

Multi-master Flowchart

START

Y

Programm the SLAVE mode:
SADR + MSDIS + SVEN

a master access ?

Yes

GENERAL CALL TREATMENT

v

Decoding of the
programming sequence

v
Read Status Register
Yes
SVACC =17 GACC =17 L
4 4
Yes SVREAD = 0 7 >
Yes Yes
Write in TWI_THR |—

@ = Vi
RXRDY=0 ? ~
|
Need to perform Read TWI_RHR |

Change SADR |

Program the Master mode

DADR + SVDIS + MSEN + CLK + R/ W

)

Read Status Register

Yes A
ARBLST =17 L

7/

Yes

_.{

Read TWI_RHR

S
Data to read?
Z

RXRDY=0 ?

Yes

TXRDY=0 ?

Data to send ?
Z

7 l 7
| Stop transfer |
—

| Read Status Register |

32058K AVR32-01/12

Yes /\ ,
TXCOMP =07

ATMEL

V4

Write in TWI_THR

}_

AT32UC3A

237



24.13 Slave Mode
24.13.1 Definition

The Slave Mode is defined as a mode where the device receives the clock and the address from
another device called the master.

In this mode, the device never initiates and never completes the transmission (START,
REPEATED_START and STOP conditions are always provided by the master).

24.13.2 Application Block Diagram

Figure 24-22. Slave Mode Typical Application Block Diagram

VDD
R R
Master
) TWD
Host with hd >
TWI
Interface TWCK ° >

Host with TWI Host with TWI LCD Controller
Interface Interface
Slave 1 Slave 2 Slave 3

24.13.3 Programming Slave Mode

The following fields must be programmed before entering Slave mode:

1. SADR (SMR): The slave device address is used in order to be accessed by master
devices in read or write mode.

2. MSDIS (CR): Disable the master mode.

3. SVEN (CR): Enable the slave mode.

As the device receives the clock, values written in CWGR are not taken into account.

24.13.4 Receiving Data

After a Start or Repeated Start condition is detected and if the address sent by the Master
matches with the Slave address programmed in the SADR (Slave ADdress) field, SVACC (Slave
ACCess) flag is set and SVREAD (Slave READ) indicates the direction of the transfer.

SVACC remains high until a STOP condition or a repeated START is detected. When such a
condition is detected, EOSACC (End Of Slave ACCess) flag is set.

24.13.4.1 Read Sequence

In the case of a Read sequence (SVREAD is high), TWI transfers data written in the THR (TWI
Transmit Holding Register) until a STOP condition or a REPEATED_START + an address differ-
ent from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmission
Complete) flag is set and SVACC reset.

AImEl@ 238

32058K AVR32-01/12



As soon as data is written in the THR, TXRDY (Transmit Holding Register Ready) flag is reset,
and it is set when the shift register is empty and the sent data acknowledged or not. If the data is
not acknowledged, the NACK flag is set.

Note that a STOP or a repeated START always follows a NACK.
See Figure 24-23 on page 240.

24.13.4.2  Write Sequence

In the case of a Write sequence (SVREAD is low), the RXRDY (Receive Holding Register
Ready) flag is set as soon as a character has been received in the RHR (TWI Receive Holding
Register). RXRDY is reset when reading the RHR.

TWI continues receiving data until a STOP condition or a REPEATED_START + an address dif-
ferent from SADR is detected. Note that at the end of the write sequence TXCOMP flag is set
and SVACC reset.

See Figure 24-24 on page 241.

24.13.4.3  Clock Synchronization Sequence

24.13.4.4 General Call

24.13.45

32058K AVR32-01/12

PDC

In the case where THR or RHR is not written/read in time, TWI performs a clock synchronization.
Clock stretching information is given by the SCLWS (Clock Wait state) bit.
See Figure 24-26 on page 242 and Figure 24-27 on page 243.

In the case where a GENERAL CALL is performed, GACC (General Call ACCess) flag is set.

After GACC is set, it is up to the programmer to interpret the meaning of the GENERAL CALL
and to decode the new address programming sequence.

See Figure 24-25 on page 241.

As itis impossible to know the exact number of data to receive/send, the use of PDC is NOT rec-
ommended in SLAVE mode.

AImEl@ 239



As itis impossible to know the exact number of data to receive/send, the use of PDC is NOT rec-
ommended in SLAVE mode.

24.13.5 Data Transfer
24.135.1 Read Operation

The read mode is defined as a data requirement from the master.

After a START or a REPEATED START condition is detected, the decoding of the address
starts. If the slave address (SADR) is decoded, SVACC is set and SVREAD indicates the direc-
tion of the transfer.

Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded
in the THR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.

Figure 24-23 on page 240 describes the write operation.

Figure 24-23. Read Access Ordered by a MASTER

SADR does not match, SADR matches,
i TWI answers with an ACK
TWianswers with a NACK ACK/NACK from the Master
l ) « S .
= —— = ; - -
LI OG0 (T Ty (Y D 5 6. 0 Gy 4 G O G (1 €
| | | |
=~RDY —4— i ) (N
] I | nfegfagags [ .
Write THR / ,Read RHR
NACK 1 | o
|
SVACC I |__ -
|
SVREAD = - - - - e o e e e e e e e e e e e e e — - -

EOSVACC —-

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. TXRDY is reset when data has been transmitted from THR to the shift register and set when
this data has been acknowledged or non acknowledged.

24.13.5.2  Write Operation

The write mode is defined as a data transmission from the master.

After a START or a REPEATED START, the decoding of the address starts. If the slave address
is decoded, SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in
this case).

Until a STOP or REPEATED START condition is detected, TWI stores the received data in the
RHR register.

If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.

Figure 24-24 on page 241 describes the Write operation.

AImEl@ 240

32058K AVR32-01/12



AT32UC3A

Figure 24-24. Write Access Ordered by a Master

SADR does not match, SADR matches,
TWI answers with a NACK TWI answers with an ACK
l Read RHR
(aoR XwX Na X pata Xna X pisisr XsADR @Q DATA X A) {a X oATa) w

I ——————

RXRDY I I R TI |—| .
|

SVACC |' )__ --

SVREAD - = == == == == == = - m - - - - m - m - — - === | SVREAD has to be taken into account only while SVACC is active
|
EOSVACC f I

Notes: 1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. RXRDY is set when data has been transmitted from the shift register to the RHR and reset
when this data is read.

24.13.5.3 General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of General Call, it is up to the programmer to decode the commands which
come afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and
program a new SADR if the programming sequence matches.

Figure 24-25 on page 241 describes the General Call access.

Figure 24-25. Master Performs a General Call

RESET command = 00000110X
0000000 +W WRITE command = 00000100X

! !
™D X5 > GENERAL CALLYS A X Reset or wite DADD>®<DATA1>®<DATA2>®:: o

New SADR I
Programming sequence |

GCACC ______ 17 o
Reset after read

SVACC ___._ I I/

Note: 1. This method allows the user to create an own programming sequence by choosing the pro-
gramming bytes and the number of them. The programming sequence has to be provided to
the master.

AImEl@ 241

32058K AVR32-01/12



24.13.6 Clock Synchronization

In both read and write modes, it may happen that THR/RHR buffer is not filled /emptied before
the emission/reception of a new character. In this case, to avoid sending/receiving undesired
data, a clock stretching mechanism is implemented.

24.13.6.1  Clock Synchronization in Read Mode

The clock is tied low if the shift register is empty and if a STOP or REPEATED START condition
was not detected. It is tied low until the shift register is loaded.

Figure 24-26 on page 242 describes the clock synchronization in Read mode.

Figure 24-26. Clock Synchronization in Read Mode
e e e e — = - Lo o e e e e e e e ———— - |
TWI_THR ————<0Amo @D ___ D C oAz
N O Y i T Dy O
O CEX AR08 2t SO P -
| I

| I
e o e e e e e e e [ S
TWCK MUEZZ0ZZ220 22222122208 J_r! . Cc--C-ZZZ-ZZ-ZZZC
| CLOCK iF tied low by the TWI

| as opg as THR is empty
I
| |

|
|
: Write THR

[
[
|
SCLWS L I: :
TXRDY ——————] <~ 1 !
SVACC I l
SVREAD - - o o o o - - - | Lo __
TXCOMP —] < Assoon as a START is detected —
@ TWI_THR is transmitted to the shift register Ack or Nack from the master

@ The data is memorized in TWI_THR until a new value is written

@ The clock is stretched after the ACK, the state of TWD is undefined during clock stretching

Notes: 1. TXRDY is reset when data has been written in the TH to the shift register and set when this data has been acknowledged or
non acknowledged.
2. Atthe end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.
3. SCLWS is automatically set when the clock synchronization mechanism is started.

AImEl@ 242

32058K AVR32-01/12



24.13.6.2 Clock Synchronization in Write Mode

The clock is tied low if the shift register and the RHR is full. If a STOP or REPEATED_START
condition was not detected, it is tied low until RHR is read.

Figure 24-27 on page 243 describes the clock synchronization in Read mode.

Figure 24-27. Clock Synchronization in Write Mode

CLOCK is tieq'i low by the TWI as long as RHR ﬂs full
|

O ET 0 O DO Crry N > G O D

TWI_RHR <" " " DATAO is not read in the RHR
————— | e e |
|
| |
ScLWS f | L
| SCL is stretched on the last bit of D/-:\TA1
RXRDY | LJ LI |
Rd DATAO/ Rd DATA1” R4 DATAZ/
SVACC [ 1
SVREAD "~~~ ~77°7° 7 [---------
TXCOMP _—l <— As soon as a START is detected —

Notes: 1. Atthe end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.
2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically reset when the mecha-

nism is finished.

AImEl@ 243

32058K AVR32-01/12



24.13.7 Reversal after a Repeated Start
24.13.7.1 Reversal of Read to Write

The master initiates the communication by a read command and finishes it by a write command.

Figure 24-28 on page 244 describes the repeated start + reversal from Read to Write mode.

Figure 24-28. Repeated Start + Reversal from Read to Write Mode

TWLTHR ﬂ@:::@i::::::::::::::::::::::;:::;::
™o s X 5ARX R A Y DATAODATA1 A @@000@

|
| |
T DATA C DATAS- - -
|

TWI_RHR :
|
L i
|
|

SVACC -
SVREAD -
TXRDY |

I
I
T
|
T
|
I
|
|

|
|
|
:
|
[

|
I

|

!

| I

[

: |

RXRDY | :

|

EOSACC I ]<— Cleared after read '_

[®

TXCOMP | <— As soon as a START is detected

24.13.7.2 Reversal of Write to Read

The master initiates the communication by a write command and finishes it by a read com-
mand.Figure 24-29 on page 244 describes the repeated start + reversal from Write to Read
mode.

Figure 24-29. Repeated Start + Reversal from Write to Read Mode
TWLTHR IR CT
| @ : \ : \ | !
T X8 HXEADRMIW X A X a0 X A DATAT X AR $r)X8a0ROK R X A pamaa X XA XA i -
\ . \ . | | I |
LR oATO>——OATAD- - - - - - - e oo e
|
|

I

SVACC | : | ' I : | [

|
SVREAD ! ! | ! l
| . | | I

TXRDY 7 | T 1 i i_:_

RXRDY /| l | o :

|

Read TWI_RHR |
EOSACC - |_|<— Cleared after read T
TXCOMP L€ _As soon as a START is detected i@

Notes: 1. In this case, if THR has not been written at the end of the read command, the clock is automatically stretched before the
ACK.
2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.

AImEl@ 244

32058K AVR32-01/12



24.13.8 Read Write Flowcharts

AT32UC3A

The flowchart shown in Figure 24-30 on page 245 gives an example of read and write operations
in Slave mode. A polling or interrupt method can be used to check the status bits. The interrupt
method requires that the interrupt enable register (IER) be configured first.

Figure 24-30. Read Write Flowchart in Slave Mode

START

Set the SLAVE mode:
SADR + MSDIS + SVEN

v

Read Status Register

32058K AVR32-01/12

l

GACC=17?

RXRDY=0 ? -
Read TWI_RHR |
GENERAL CALL TREATMENT
l Yes
Decoding of the
programming sequence
Prog seq /

Write in TWI_THR |

OK?

ATMEL

245



24.14 Two-wire Interface (TWI) User Interface

24.14.1 Register Mapping
Table 24-4.  TWI User Interface
Offset Register Name Access Reset
0x00 Control Register CR Write-only N/A
0x04 Master Mode Register MMR Read-write 0x00000000
0x08 Slave Mode Register SMR Read-write 0x00000000
0x0C Internal Address Register IADR Read-write 0x00000000
0x10 Clock Waveform Generator Register CWGR Read-write 0x00000000
0x20 Status Register SR Read-only 0x0000F009
0x24 Interrupt Enable Register IER Write-only N/A
0x28 Interrupt Disable Register IDR Write-only N/A
0x2C Interrupt Mask Register IMR Read-only 0x00000000
0x30 Receive Holding Register RHR Read-only 0x00000000
0x34 Transmit Holding Register THR Write-only 0x00000000
0x38 - OxF8 Reserved - - -
0xFC Version Register TWI_VER Read-only 0x00000000("
0x38 - OxFC Reserved - - -
Note: 1. Values in the Version Register vary with the version of the IP block implementation.
24.14.2 TWI Control Register
Name: CR
Access: Write-only
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| SWRST | - | SVDIS | SVEN | MSDIS | MSEN | STOP | START |

* START: Send a START Condition

0 = No effect.

1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.

32058K AVR32-01/12

ATMEL

246



This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (THR).

 STOP: Send a STOP Condition
0 = No effect.

1 = STOP Condition is sent just after completing the current byte transmission in master read mode.
- In single data byte master read, the START and STOP must both be set.
- In multiple data bytes master read, the STOP must be set after the last data received but one.

- In master read mode, if a NACK bit is received, the STOP is automatically performed.
- In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically sent.

« MSEN: TWI Master Mode Enabled

0 = No effect.

1 = If MSDIS = 0, the master mode is enabled.

Note:  Switching from Slave to Master mode is only permitted when TXCOMP = 1.

« MSDIS: TWI Master Mode Disabled
0 = No effect.

1 = The master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are
transmitted in case of write operation. In read operation, the character being transferred must be completely received
before disabling.

* SVEN: TWI Slave Mode Enabled

0 = No effect.

1 =1f SVDIS = 0, the slave mode is enabled.

Note:  Switching from Master to Slave mode is only permitted when TXCOMP = 1.

» SVDIS: TWI Slave Mode Disabled
0 = No effect.

1 = The slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read oper-
ation. In write operation, the character being transferred must be completely received before disabling.

» SWRST: Software Reset
0 = No effect.

1 = Equivalent to a system reset.

AImEl@ 247

32058K AVR32-01/12



24.14.3 TWI Master Mode Register

Name: MMR

Access: Read-write

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- T - T - - - - - — ]
23 22 21 20 19 18 17 16

| - | DADR |
15 14 13 12 11 10 9 8

| - | — | - | MREAD| - | - | IADRSZ |
7 6 5 4 3 2 1 0

* |ADRSZ: Internal Device Address Size

IADRSZ[9:8] Description
0 0 No internal device address
0 1 One-byte internal device address
1 0 Two-byte internal device address
1 1 Three-byte internal device address

» MREAD: Master Read Direction
0 = Master write direction.

1 = Master read direction.

* DADR: Device Address
The device address is used to access slave devices in read or write mode. Those bits are only used in Master mode.

AImEl@ 248

32058K AVR32-01/12



24.14.4 TWI Slave Mode Register

Name: SMR

Access: Read-write

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- T - T - - - - - —
23 22 21 20 19 18 17 16

| - | SADR |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I I |
7 6 5 4 3 2 1 0

* SADR: Slave Address
The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode.

SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.

AImEl@ 249

32058K AVR32-01/12



24145 TWI Internal Address Register

Name: IADR
Access: Read-write
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| IADR |
15 14 13 12 11 10 9 8
| IADR |
7 6 5 4 3 2 1 0
IADR |

* |ADR: Internal Address

0, 1, 2 or 3 bytes depending on IADRSZ.

32058K AVR32-01/12

ATMEL

250



24.14.6 TWI Clock Waveform Generator Register

Name: CWGR

Access: Read-write

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- T - 1T - T - T -1 - - —
23 22 21 20 19 18 17 16

I I I I I I CKDIV |
15 14 13 12 11 10 9 8

| CHDIV |
7 6 5 4 3 2 1 0

| CLDIV |

CWGR is only used in Master mode.

e CLDIV: Clock Low Divider
The SCL low period is defined as follows:

CKDIV

Tiow = ((CLDIV x 2 )+4)x Tyck

» CHDIV: Clock High Divider
The SCL high period is defined as follows:

Thigh = ((CHDIV x 29PNy 4 4y Ty

» CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.

AImEl@ 251

32058K AVR32-01/12



24.14.7 TWI Status Register

Name: SR

Access: Read-only

Reset Value: 0x0000F009
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| TXBUFE | RXBUFF | ENDTX | ENDRX | EOSACC | SCLWS | ARBLST | NACK |
7 6 5 4 3 2 1 0

| - | OVRE | GACC | SVACC | SVREAD | TXRDY | RXRDY | TXCOMP |

« TXCOMP: Transmission Completed (automatically set / reset)
TXCOMP used in Master mode:

0 = During the length of the current frame.

1 = When both holding and shifter registers are empty and STOP condition has been sent.

TXCOMP behavior in Master mode can be seen in Figure 24-8 on page 225 and in Figure 24-10 on page 226.

TXCOMP used in Slave mode:

0 = As soon as a Start is detected.

1 = After a Stop or a Repeated Start + an address different from SADR is detected.

TXCOMP behavior in Slave mode can be seen in Figure 24-26 on page 242, Figure 24-27 on page 243, Figure 24-28 on
page 244 and Figure 24-29 on page 244.

» RXRDY: Receive Holding Register Ready (automatically set / reset)

0 = No character has been received since the last RHR read operation.

1 = A byte has been received in the RHR since the last read.

RXRDY behavior in Master mode can be seen in Figure 24-10 on page 226.

RXRDY behavior in Slave mode can be seen in Figure 24-24 on page 241, Figure 24-27 on page 243, Figure 24-28 on
page 244 and Figure 24-29 on page 244.

» TXRDY: Transmit Holding Register Ready (automatically set / reset)

TXRDY used in Master mode:

0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into THR register.

1 = As soon as a data byte is transferred from THR to internal shifter or if a NACK error is detected, TXRDY is set at the
same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).

TXRDY behavior in Master mode can be seen in Figure 24-8 on page 225.

AImEl@ 252

32058K AVR32-01/12



TXRDY used in Slave mode:
0 = As soon as data is written in the THR, until this data has been transmitted and acknowledged (ACK or NACK).
1 = It indicates that the THR is empty and that data has been transmitted and acknowledged.

If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the
programmer must not fill THR to avoid losing it.

TXRDY behavior in Slave mode can be seen in Figure 24-23 on page 240, Figure 24-26 on page 242, Figure 24-28 on
page 244 and Figure 24-29 on page 244.

* SVREAD: Slave Read (automatically set / reset)

This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant.

0 = Indicates that a write access is performed by a Master.

1 = Indicates that a read access is performed by a Master.

SVREAD behavior can be seen in Figure 24-23 on page 240, Figure 24-24 on page 241, Figure 24-28 on page 244 and
Figure 24-29 on page 244.

» SVACC: Slave Access (automatically set / reset)

This bit is only used in Slave mode.

0 = TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected.

1 = Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a
NACK or a STOP condition is detected.

SVACC behavior can be seen in Figure 24-23 on page 240, Figure 24-24 on page 241, Figure 24-28 on page 244 and Fig-
ure 24-29 on page 244.

e GACC: General Call Access (clear on read)

This bit is only used in Slave mode.

0 = No General Call has been detected.

1 = A General Call has been detected. After the detection of General Call, the programmer decoded the commands that fol-
low and the programming sequence.

GACC behavior can be seen in Figure 24-25 on page 241.

» OVRE: Overrun Error (clear on read)

This bit is only used in Master mode.

0 = RHR has not been loaded while RXRDY was set

1 = RHR has been loaded while RXRDY was set. Reset by read in SR when TXCOMP is set.
* NACK: Not Acknowledged (clear on read)

NACK used in Master mode:

0 = Each data byte has been correctly received by the far-end side TWI slave component.

1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP.

AImEl@ 253

32058K AVR32-01/12



NACK used in Slave Read mode:
0 = Each data byte has been correctly received by the Master.

1 = In read mode, a data byte has not been acknowledged by the Master. When NACK is set the programmer must not fill
THR even if TXRDY is set, because it means that the Master will stop the data transfer or re initiate it.

Note that in Slave Write mode all data are acknowledged by the TWI.

* ARBLST: Arbitration Lost (clear on read)

This bit is only used in Master mode.

0 = Arbitration won.

1 = Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.
» SCLWS: Clock Wait State (automatically set / reset)

This bit is only used in Slave mode.

0 = The clock is not stretched.

1 = The clock is stretched. THR / RHR buffer is not filled / emptied before the emission / reception of a new character.
SCLWS behavior can be seen in Figure 24-26 on page 242 and Figure 24-27 on page 243.

« EOSACC: End Of Slave Access (clear on read)

This bit is only used in Slave mode.

0 = A slave access is being performing.

1 = The Slave Access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.
EOSACC behavior can be seen in Figure 24-28 on page 244 and Figure 24-29 on page 244

* ENDRX: End of RX buffer

This bit is only used in Master mode.

0 = The Receive Counter Register has not reached 0 since the last write in RCR or RNCR.

1 = The Receive Counter Register has reached 0 since the last write in RCR or RNCR.

 ENDTX: End of TX buffer

This bit is only used in Master mode.

0 = The Transmit Counter Register has not reached 0 since the last write in TCR or TNCR.

1 = The Transmit Counter Register has reached 0 since the last write in TCR or TNCR.

* RXBUFF: RX Buffer Full

This bit is only used in Master mode.

0 = RCR or RNCR have a value other than 0.

1 = Both RCR and RNCR have a value of 0.

» TXBUFE: TX Buffer Empty

This bit is only used in Master mode.

0 = TCR or TNCR have a value other than 0.

AImEl@ 254

32058K AVR32-01/12



1 = Both TCR and TNCR have a value of 0.

24.14.8 TWI Interrupt Enable Register

Name: IER

Access: Write-only

Reset Value: 0x00000000

31 30 29 28

27

26

25

24

23 22 21 20

19

18

17

16

15 14 13 12

11

10

9

TXBUFE | RXBUFF | ENDTX | ENDRX | EOSACC

SCL_WS

ARBLST

NACK |

0

- | OVRE | GACC | SVACC |

TXRDY

RXRDY

TXCOMP |

0

32058K AVR32-01/12

TXCOMP: Transmission Completed Interrupt Enable
RXRDY: Receive Holding Register Ready Interrupt Enable
TXRDY: Transmit Holding Register Ready Interrupt Enable
SVACC: Slave Access Interrupt Enable

GACC: General Call Access Interrupt Enable

OVRE: Overrun Error Interrupt Enable

NACK: Not Acknowledge Interrupt Enable

ARBLST: Arbitration Lost Interrupt Enable

SCL_WS: Clock Wait State Interrupt Enable

EOSACC: End Of Slave Access Interrupt Enable

ENDRX: End of Receive Buffer Interrupt Enable

ENDTX: End of Transmit Buffer Interrupt Enable
RXBUFF: Receive Buffer Full Interrupt Enable

TXBUFE: Transmit Buffer Empty Interrupt Enable

= No effect.

ATMEL

255



1 = Enables the corresponding interrupt.

24.14.9 TWI Interrupt Disable Register

Name: IDR

Access: Write-only

Reset Value: 0x00000000

31 30 29 28

27

26

25

24

23 22 21 20

19

18

17

16

15 14 13 12

11

10

9

TXBUFE | RXBUFF | ENDTX | ENDRX | EOSACC

SCL_WS

ARBLST

NACK

7 6 5 4

0

- | OVRE | GACC | SVACC |

TXRDY

RXRDY

TXCOMP

0

TXCOMP: Transmission Completed Interrupt Disable
RXRDY: Receive Holding Register Ready Interrupt Disable
TXRDY: Transmit Holding Register Ready Interrupt Disable
SVACC: Slave Access Interrupt Disable

GACC: General Call Access Interrupt Disable

OVRE: Overrun Error Interrupt Disable

NACK: Not Acknowledge Interrupt Disable

ARBLST: Arbitration Lost Interrupt Disable

SCL_WS: Clock Wait State Interrupt Disable

EOSACC: End Of Slave Access Interrupt Disable

ENDRX: End of Receive Buffer Interrupt Disable

ENDTX: End of Transmit Buffer Interrupt Disable
RXBUFF: Receive Buffer Full Interrupt Disable

TXBUFE: Transmit Buffer Empty Interrupt Disable

= No effect.

1 = Disables the corresponding interrupt.

32058K AVR32-01/12

ATMEL

256



24.14.10 TWI Interrupt Mask Register

Name: IMR
Access: Read-only
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXBUFE | RXBUFF | ENDTX | ENDRX EOSACC | SCL_WS | ARBLST | NACK |
7 6 5 4 3 2 1 0
| - | OVRE | GACC | SVACC - | TXRDY | RXRDY | TXCOMP |
« TXCOMP: Transmission Completed Interrupt Mask
« RXRDY: Receive Holding Register Ready Interrupt Mask
« TXRDY: Transmit Holding Register Ready Interrupt Mask
» SVACC: Slave Access Interrupt Mask
* GACC: General Call Access Interrupt Mask
» OVRE: Overrun Error Interrupt Mask
* NACK: Not Acknowledge Interrupt Mask
* ARBLST: Arbitration Lost Interrupt Mask
» SCL_WS: Clock Wait State Interrupt Mask
» EOSACC: End Of Slave Access Interrupt Mask
 ENDRX: End of Receive Buffer Interrupt Mask
 ENDTX: End of Transmit Buffer Interrupt Mask
 RXBUFF: Receive Buffer Full Interrupt Mask
» TXBUFE: Transmit Buffer Empty Interrupt Mask
0 = The corresponding interrupt is disabled.
1 = The corresponding interrupt is enabled.
24.14.11 TWI Receive Holding Register
Name: RHR
AIMEL
. ________________[G]

32058K AVR32-01/12



Access:

Reset Value: 0x00000000

Read-only

31 30 29 28 27 26 25 24
I - — T - - - — ]
23 22 21 20 19 18 17 16
I - - — 1 - - - — ]

15 14 13 12 11 10
I - — T - - - — ]
7 6 5 4 3 2 1 0
| RXDATA |
» RXDATA: Master or Slave Receive Holding Data
24.14.12 TWI Transmit Holding Register
Name: THR
Access: Read-write
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
I - — 1 - - - ]
23 22 21 20 19 18 17 16
I - — T - - - — ]
15 14 13 12 11 10 9 8
I - — 1 - - - ]
7 6 5 4 3 2 1 0
TXDATA |

» TXDATA: Master or Slave Transmit Holding Data

32058K AVR32-01/12

ATMEL

258



25. Synchronous Serial Controller (SSC)

Rev: 3.0.0.2

25.1 Features

* Provides Serial Synchronous Communication Links Used in Audio and Telecom Applications

* Contains an Independent Receiver and Transmitter and a Common Clock Divider

* Interfaced with Two PDCA Channels (DMA Access) to Reduce Processor Overhead

» Offers a Configurable Frame Sync and Data Length

* Receiver and Transmitter Can be Programmed to Start Automatically or on Detection of Different
Events on the Frame Sync Signal

* Receiver and Transmitter Include a Data Signal, a Clock Signal and a Frame Synchronization
Signal

25.2 Overview

The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as 12S, Short Frame Sync, Long Frame Sync, etc.

The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TX_DATA/RX_DATA signal
for data, the TX_CLOCK/RX_CLOCK signal for the clock and the
TX_FRAME_SYNC/RX_FRAME_SYNC signal for the Frame Sync. The transfers can be pro-
grammed to start automatically or on different events detected on the Frame Sync signal.

The SSC'’s high-level of programmability and its two dedicated PDCA channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.

Featuring connection to two PDCA channels, the SSC permits interfacing with low processor
overhead to the following:

» CODEC's in master or slave mode

» DAC through dedicated serial interface, particularly 12S

* Magnetic card reader

AImEl@ 259

32058K AVR32-01/12



AT32UC3A

25.3 Block Diagram

Figure 25-1. Block Diagram

High

Peripheral Bus
Bridge

Peripheral L4

"
E
:
:

:
I

SSC Interface PIO

4
2
;
3

4
F:
:

Interrupt Control

SSC Interrupt
25.4 Application Block Diagram

Figure 25-2. Application Block Diagram

, Power Interrupt Test
OS or RTOS Driver Management Management | Management

SSC

Serial AUDIO Codec Time Slot Frame Line Interface]
Management | Management

AImEl@ 260

32058K AVR32-01/12



25.5 1/O Lines Description

Table 25-1.  1/O Lines Description

Pin Name Pin Description Type
RX_FRAME_SYNC Receiver Frame Synchro Input/Output
RX_CLOCK Receiver Clock Input/Output
RX_DATA Receiver Data Input
TX_FRAME_SYNC Transmitter Frame Synchro Input/Output
TX_CLOCK Transmitter Clock Input/Output
TX_DATA Transmitter Data Output

25.6 Product Dependencies

25.6.1 I/O Lines

The pins used for interfacing the compliant external devices may be multiplexed with P1O lines.

Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver 1/O lines to the SSC peripheral mode.

Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter /O lines to the SSC peripheral mode.

25.6.2 Power Management

25.6.3 Interrupt

The SSC clock is generated by the power manager. Before using the SSC, the programmer
must ensure that the SSC clock is enabled in the power manager.

In the SSC description, Master Clock (CLK_SSC) is the bus clock of the peripheral bus to which
the SSC is connected.

The SSC interface has an interrupt line connected to the interrupt controller. Handling interrupts
requires programming the interrupt controller before configuring the SSC.

All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt ser-
vice routine can get the interrupt origin by reading the SSC interrupt status register.

25.7 Functional Description

32058K AVR32-01/12

This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.

The receiver and transmitter operate separately. However, they can work synchronously by pro-
gramming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be pro-
grammed to operate with the clock signals provided on either the TX_CLOCK or RX_CLOCK
pins. This allows the SSC to support many slave-mode data transfers. The maximum clock
speed allowed on the TX_CLOCK and RX_CLOCK pins is the master clock divided by 2.

AImEl@ 261



Figure 25-3. SSC Functional Block Diagram

AT32UC3A

Transmitter —
Clock Qutput PN TX CLOCK
Controller -
TX_CLOCK Input
CLK_SSC Clock o | Transmit Clock | TXclock | | Frame Sync | ylqy TX_FRAME_SYNC
Divider ”|  Controller ”| Controller
RX clock ——
TX_FRAME_SYNC v _
RX_FRAME_SYNC Start —>| Transmit Shift Register | > TX_DATA
| [ — Selector |
A A
; TX PDCA | Transmit Holding Transmit Sync
Perg)lTSe ra > Register Holding Register
<> Load Shift —2 L)
User
Interface
Receiver Clock Output [, [, | RX CLOCK
—t— Controller hlk —
RX_CLOCK
Input | Receive Clock |RX dlock | FrameSync | | [ |
Controller Controller RX_FRAME_SYNC
TX clock — -
TX_FRAME_SYN Y —
- ‘—C> Start - : - 1,
RCFRME S | Selctor — *Reoelve Shift Reglster* [« RX_DATA
\ A / RX_PDCA| Receive Holding Receive Sync
N ¢ Register Holding Register
PDCA ', Interrupt Control Load Shift A A

l

Interrupt Controller

25.7.1 Clock Management

The transmitter clock can be generated by:
« an external clock received on the TX _CLOCK I/O pad
* the receiver clock
+ the internal clock divider

The receiver clock can be generated by:
« an external clock received on the RX_CLOCK I/O pad
* the transmitter clock
» the internal clock divider

Furthermore, the transmitter block can generate an external clock on the TX_CLOCK |/O pad,

and the receiver block can generate an external clock on the RX_CLOCK

I/O pad.

This allows the SSC to support many Master and Slave Mode data transfers.

ATMEL

32058K AVR32-01/12

262



25.7.1.1 Clock Divider

Figure 25-4. Divided Clock Block Diagram
Clock Divider

CVMR

K SSC T2 || 12:it Courter || DMided Clock

A 4

The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register CMR, allowing a Master Clock division by up
to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this field is
programmed to 0, the Clock Divider is not used and remains inactive.

When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Mas-
ter Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.

Figure 25-5. Divided Clock Generation

Master Clock _u_Lm_l_rL

Divided Clock
DIV =1

it

“—>
Divided Clock Frequency = CLK_SSC/2

Divided Clock | |

DIV=3
< >
Divided Clock Frequency = CLK_SSC/6
Table 25-2.
Maximum Minimum
CLK_SSC/2 CLK_SSC /8190
25.7.1.2 Transmitter Clock Management

The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TX_CLOCK 1/O pad. The transmitter clock is selected by the CKS field in
TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by the

CKI bits in TCMR.
— ©

32058K AVR32-01/12



25.7.1.3

32058K AVR32-01/12

The transmitter can also drive the TX_CLOCK I/O pad continuously or be limited to the actual
data transfer. The clock output is configured by the TCMR register. The Transmit Clock Inver-
sion (CKIl) bits have no effect on the clock outputs. Programming the TCMR register to select
TX_CLOCK pin (CKS field) and at the same time Continuous Transmit Clock (CKO field) might
lead to unpredictable results.

Figure 25-6. Transmitter Clock Management

TX_CLOCK(pin)
MUX Tri-state y Jlock
) Controller " Output
Receiver > »
Clock
Divider—b
Clock
T CKO Data Transfer
CKS
- I\I/II\llJ\;( N Tri-state Transmitter
Controller Clock
K CKG

Receiver Clock Management

The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RX_CLOCK 1/O pad. The Receive Clock is selected by the CKS field in
RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by the
CKIl bits in RCMR.

The receiver can also drive the RX_CLOCK I/O pad continuously or be limited to the actual data
transfer. The clock output is configured by the RCMR register. The Receive Clock Inversion
(CKIl) bits have no effect on the clock outputs. Programming the RCMR register to select
RX_CLOCK pin (CKS field) and at the same time Continuous Receive Clock (CKO field) can
lead to unpredictable results.

AImEl@ 264



Figure 25-7. Receiver Clock Management

RX_CLOCK (pin)

i
MUX Tri-state Clock
Controller » Output
Transmitter > »
Clock
Divider >
Clock
CKO Data Transfer
CKS INV Tri-state
> MUX > Controller S Receiver
Clock
CKI CKG

25.7.1.4 Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TX_CLOCK or RX_CLOCK pins. This allows the SSC to support many slave-mode
data transfers. In this case, the maximum clock speed allowed on the RX_CLOCK pin is:
— Master Clock divided by 2 if Receiver Frame Synchro is input
— Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TX_CLOCK pin is:

— Master Clock divided by 6 if Transmit Frame Synchro is input
— Master Clock divided by 2 if Transmit Frame Synchro is output

25.7.2 Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured by setting the Transmit Clock Mode Register (TCMR). See Section
“25.7.4” on page 267.

The frame synchronization is configured setting the Transmit Frame Mode Register (TFMR).
See Section “25.7.5” on page 269.

To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the TCMR. Data is written by the application to the THR register then
transferred to the shift register according to the data format selected.

When both the THR and the transmit shift register are empty, the status flag TXEMPTY is set in
SR. When the Transmit Holding register is transferred in the Transmit shift register, the status
flag TXRDY is set in SR and additional data can be loaded in the holding register.

AImEl@ 265

32058K AVR32-01/12



Figure 25-8. Transmitter Block Diagram

CR.TXEN

AT32UC3A

| SRTXEN
CR.TXDIS
TFMR.DATDEF TCMR.STTDLY
TFMR.FSDEN
TFMR.DATNB
1
TX_FRAME_SYNC g
— — TFMR.MSBF 0 TX_DATA
RX_FRAME_SYNC
Transmitter Clock +Sta it |
—> Selector Transmit Shift Register I—
TFMR.FSDEN
TCMR.STTDLY

TFMR.DATLEN —| THR

TSHR |_ TFMR.FSLEN

25.7.3 Receiver Operations

32058K AVR32-01/12

A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.

The start event is configured setting the Receive Clock Mode Register (RCMR). See Section
“25.7.4” on page 267.

The frame synchronization is configured setting the Receive Frame Mode Register (RFMR). See
Section “25.7.5” on page 269.

The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the RCMR. The data is transferred from the shift register depending on the data for-
mat selected.

When the receiver shift register is full, the SSC transfers this data in the holding register, the sta-
tus flag RXRDY is set in SR and the data can be read in the receiver holding register. If another
transfer occurs before read of the RHR register, the status flag OVERUN is set in SR and the
receiver shift register is transferred in the RHR register.

AImEl@ 266



Figure 25-9. Receiver Block Diagram

RX_CLOCK (pin) 3
MUX Tri-state Clock
Controller > Output
Transmitter > »
Clock
Divider >
Clock
T CKO Data Transfer
CKS INV Tri-state
>» MUX » Controller _}Receiver
Clock
CKI CKG

25.7.4 Start

The transmitter and receiver can both be programmed to start their operations when an event

occurs, respectively in the Transmit Start Selection (START) field of TCMR and in the Receive
Start Selection (START) field of RCMR.

Under the following conditions the start event is independently programmable:
» Continuous. In this case, the transmission starts as soon as a word is written in THR and the
reception starts as soon as the Receiver is enabled.
» Synchronously with the transmitter/receiver
» On detection of a falling/rising edge on TX_FRAME_SYNC/RX_FRAME_SYNC
» On detection of a low level/high level on TX_FRAME_SYNC/RX_FRAME_SYNC
» On detection of a level change or an edge on TX_FRAME_SYNC/RX_FRAME_SYNC

A start can be programmed in the same manner on either side of the Transmit/Receive Clock

Register (RCMR/TCMR). Thus, the start could be on TX_FRAME_SYNC (Transmit) or
RX_FRAME_SYNC (Receive).

Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.

Detection on TX_FRAME_SYNC/RX_FRAME_SYNC input/output is done by the field FSOS of
the Transmit/Receive Frame Mode Register (TFMR/RFMR).

AImEl@ 267

32058K AVR32-01/12



AT32UC3A

Figure 25-10. Transmit Start Mode

TX_FRAME_SYNC (Input)

TX_DATA (Output)
: < :
Start= Low Level on TX_FRAME_SYNC STTDLY

TX_DATA (Output) " Bo
Start= Falling Edge on TX_FRAME_SYNC

1
O

STTDLY

TX_DATA (Output) % \
Start= High Level on TX_FRAME_SYNC F/ STTDLY
o
TX_DATA (Output) X < BO > B1 >
Start= Rising Edge on TX_FRAME_SYNC N\ STTDLY
Y
TX_DATA (Output) —
Start= Level Change on TX_FRAME_SYNC< .o BO >
<€ < STTDLY
TX_DATA (Output)
Start= Any Edge on TX_FRAME_SYNC X <‘ BO /< B1 > N B STTDLY
Y Y

Figure 25-11. Receive Pulse/Edge Start Modes

RX_FRAME_SYNC (Input)

RX_DATA (Input) C—
i X X
Start = Low Level on RX_FRAME_SYNC LN STTDLY
Y

RX_DATA (Input) < >

Start = Falling Edge on RX_FRAME_SYNC X — STTDLY

Y

RX_DATA (Input) @

Start = High Level on RX_FRAME_SYNC STTDLY

RX_DATA (Input) <
Start = Rising Edge on RX_FRAME_SYNC

RX_DATA (Input) C—
Start = Level Change on RX_FRAME_SYNC N

RX_DATA (Input)

Start = Any Edge on RX_FRAME_SYNC @i BO 2

Ceo X1 )

\ STTDLY

.

80 X &1
\—— —— STTDLY

£ BO ps

P

-

)12
N

Cer)
STTDLY

AImEl@ 268

32058K AVR32-01/12



25.7.5 Frame Sync

The Transmitter and Receiver Frame Sync pins, TX_FRAME_SYNC and RX_FRAME_SYNC,
can be programmed to generate different kinds of frame synchronization signals. The Frame
Sync Output Selection (FSOS) field in the Receive Frame Mode Register (RFMR) and in the
Transmit Frame Mode Register (TFMR) are used to select the required waveform.

» Programmable low or high levels during data transfer are supported.

» Programmabile high levels before the start of data transfers or toggling are also supported.
If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in RFMR and TFMR pro-
grams the length of the pulse, from 1 bit time up to 16 bit time.

The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in RCMR and TCMR.

25.7.5.1 Frame Sync Data

Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.

During the Frame Sync signal, the Receiver can sample the RX_DATA line and store the data in
the Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Reg-
ister in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync
signal is programmed by the FSLEN field in RFMR/TFMR.

Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.

The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in TFMR is set. If the Frame Sync length is equal to or lower than the
delay between the start event and the actual data transmission, the normal transmission has pri-
ority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit
Register, then shifted out.

25.7.5.2 Frame Sync Edge Detection

32058K AVR32-01/12

The Frame Sync Edge detection is programmed by the FSEDGE field in RFMR/TFMR. This sets
the corresponding flags RXSYN/TXSYN in the SSC Status Register (SR) on frame synchro
edge detection (signals RX_FRAME_SYNC/TX_FRAME_SYNC).

AImEl@ 269



25.7.6 Receive Compare Modes

Figure 25-12. Receive Compare Modes

RX_CLOCK 1 % % % l 1 l l l l

AT D SO D €Y CD Y
Eart

»
L)
FSLEN STTDLY DATLEN
Up to 16 Bits
(4 in This Example)

A
\ 4
A

25.7.6.1 Compare Functions
Compare 0 can be one start event of the Receiver. In this case, the receiver compares at each
new sample the last FSLEN bits received at the FSLEN lower bit of the data contained in the
Compare 0 Register (RCOR). When this start event is selected, the user can program the
Receiver to start a new data transfer either by writing a new Compare 0, or by receiving continu-
ously until Compare 1 occurs. This selection is done with the bit (STOP) in RCMR.

25.7.7 Data Format

The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (TFMR) and the Receiver Frame Mode Register (RFMR). In
either case, the user can independently select:

+ the event that starts the data transfer (START)

« the delay in number of bit periods between the start event and the first data bit (STTDLY)

+ the length of the data (DATLEN)

+ the number of data to be transferred for each start event (DATNB).

+ the length of synchronization transferred for each start event (FSLEN)

» the bit sense: most or lowest significant bit first (MSBF).

Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TX_DATA pin while not in data transfer operation. This is done respectively by the Frame
Sync Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in TFMR.

AImEl@ 270

32058K AVR32-01/12



Table 25-3. Data Frame Registers
Transmitter Receiver Field Length Comment
TFMR RFMR DATLEN Up to 32 Size of word
TFMR RFMR DATNB Upto 16 Number of words transmitted in frame
TFMR RFMR MSBF Most significant bit first
TFMR RFMR FSLEN Up to 16 Size of Synchro data register
TFMR DATDEF Oor1 Data default value ended
TFMR FSDEN Enable send TSHR
TCMR RCMR PERIOD Up to 512 Frame size
TCMR RCMR STTDLY Up to 255 Size of transmit start delay

Figure 25-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes

Start

»i
TX_FRAME_SYNC ¥

/ 1)
RX_FRAME_SYNC

TX_DATA
(If FSDEN = 1)

TX_DATA
(If FSDEN = 0)

RX_DATA

Note: 1.

32058K AVR32-01/12

D

Start
PERIOD -
L
Y
d o
U FSLEN ™
Sync Data Default Data < Data >( Default > Sync Data
From TSHR | From DATDER From THR From THR From DATDER
Default Data Data > Default
FromiDATDEF From THR From THR From DATDEF
Sync Data Ignored Data < Data > Ignored Sync Data
To RSHR To RHR To RHR
Y L} »
STTDLY DATLEN DATLEN

H/—/

ATMEL

DATNB

Example of input on falling edge of TX_FRAME_SYNC/RX_FRAME_SYNC.

271



25.7.8 Loop Mode

25.7.9 Interrupt

32058K AVR32-01/12

AT32UC3A

Figure 25-14. Transmit Frame Format in Continuous Mode

J Start
4
TX_DATA Data \ Data >1: Default ><
FomTHR | FromTHR |
< > i
DATLEN ' DATLEN !

Start: 1. TXEMPTY set to 1
2. Write into the THR

Note: 1. STTDLY is set to 0. In this example, THR is loaded twice. FSDEN value has no effect on the
transmission. SyncData cannot be output in continuous mode.

Figure 25-15. Receive Frame Format in Continuous Mode

Start = Enable Receiver
\ 4

RX_DATA Data 'y< Data ><
|

ToRHR i ToRHR
<“—>

DATLEN DATLEN

Note: 1. STTDLY is setto 0.

The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in RFMR. In this case, RX_DATA is connected to TX_DATA,
RX_FRAME_SYNC is connected to TX_FRAME_SYNC and RX_CLOCK is connected to
TX_CLOCK.

Most bits in SR have a corresponding bit in interrupt management registers.

The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing IER (Interrupt Enable Register) and IDR (Interrupt Disable Register) These
registers enable and disable, respectively, the corresponding interrupt by setting and clearing
the corresponding bit in IMR (Interrupt Mask Register), which controls the generation of inter-
rupts by asserting the SSC interrupt line connected to the interrupt controller.

AImEl@ 272



AT32UC3A

Figure 25-16. Interrupt Block Diagram

A
| er ||| DR |
PDCA Set¢ ¢Clear
TXBUFE >
ENDTX >
Transmitter
TXRDY >
TXEMPTY »
TXSYNC >
RXBUFF > Control
ENDRX »
Receiver
RXRDY >
OVRUN >
RXSYNC >

25.8 SSC Application Examples

The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.

Figure 25-17. Audio Application Block Diagram

Clock SCK
TX_CLOCK| [« >
Word Select WS
TX_FRAME_SYNC|  [€ > 12
RECEIVER
Data SD
TX_DATA >
SsC
RX_DATA Clock SCK Mwm—
RX_FRAME_SYNC Word Select WS ‘ ' ' ' & ' : ' '
| o N

Left Channel Right Channel

AImEl@ 273

32058K AVR32-01/12



Figure 25-18. Codec Application Block Diagram

— Serial Data Clock (SCLK)
TX_CLOCK »
— Frame sync (FSYNC)
TX_FRAME_SYNC d
— CODEC
— Serial Data Out
TX_DATA g
SSC —
— Serial Data In
RX_DATA <
RX_F E_SYNC Serial Data Clock (SCLK)
RX_CLOCK Frame sync (FSYNC) J/_\ First Time Slot «
— : ))

Dstart

Dend
SeialDataout m

Figure 25-19. Time Slot Application Block Diagram

— SCLK
TX _CLOCK P
— FSYNC
TX_FRAME_SYNC » CODEC
First
TX_DATA Data Out » Time Slot
SSC —
RX_DATA < Datain
RX_FRAME_SYNC
L »
RX_CLOCK R CODEC
Second
Time Slot
Ll

Serial Data Clock (SCLK) gs

First Time Slot (« Second Time Slot
1

Dstart ! Dend

XXX KA
SerelDatain MDQQQC

AImEl@ 274

Frame sync (FSYNC)

Serial Data Out

b

32058K AVR32-01/12



25.9 User Interface

Table 25-4.  Register Mapping

Offset Register Register Name Access Reset
0x0 Control Register CR Write -
0x4 Clock Mode Register CMR Read/Write 0x0
0x8 Reserved - - -
0xC Reserved - - -
0x10 Receive Clock Mode Register RCMR Read/Write 0x0
0x14 Receive Frame Mode Register RFMR Read/Write 0x0
0x18 Transmit Clock Mode Register TCMR Read/Write 0x0
0x1C Transmit Frame Mode Register TFMR Read/Write 0x0
0x20 Receive Holding Register RHR Read 0x0
0x24 Transmit Holding Register THR Write -
0x28 Reserved - - -
0x2C Reserved - - -
0x30 Receive Sync. Holding Register RSHR Read 0x0
0x34 Transmit Sync. Holding Register TSHR Read/Write 0x0
0x38 Receive Compare 0 Register RCOR Read/Write 0x0
0x3C Receive Compare 1 Register RC1R Read/Write 0x0
0x40 Status Register SR Read 0x000000CC
0x44 Interrupt Enable Register IER Write -
0x48 Interrupt Disable Register IDR Write -
0x4C Interrupt Mask Register IMR Read 0x0

0x50-0xFC Reserved - - -

AImEl@ 275

32058K AVR32-01/12



25.9.1 Control Register

Name: CR

Access Type: Write-only

Offset: 0x00

Reset value: -
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| SWRST | - | - | - | - | - | TXDIS | TXEN |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RXDIS | RXEN |

» SWRST: Software Reset
0: No effect.

1: Performs a software reset. Has priority on any other bit in CR.

» TXDIS: Transmit Disable
0: No effect.

1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.

« TXEN: Transmit Enable
0: No effect.

1: Enables Transmit if TXDIS is not set.

 RXDIS: Receive Disable
0: No effect.

1: Disables Receive. If a character is currently being received, disables at end of current character reception.

» RXEN: Receive Enable
0: No effect.

1: Enables Receive if RXDIS is not set.

AImEl@ 276

32058K AVR32-01/12



25.9.2 Clock Mode Register

Name: CMR

Access Type: Read/Write

Offset: 0x04

Reset value: 0x00000000
31 30 29 28 27 26 25 24

. - r - ¢ - - r - rr - £ - [ - 1]
23 22 21 20 19 18 17 16

. - r - ¢ - - r - rr - £ - [ - 1}
15 14 13 12 11 10 9 8

. - r - [ - [ - 1] DIV |
7 6 5 4 3 2 1 0

| DIV |

» DIV: Clock Divider
0: The Clock Divider is not active.

Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is CLK_SSC/2.
The minimum bit rate is CLK_SSC/2 x 4095 = CLK_SSC/8190.

AImEl@ 277

32058K AVR32-01/12



25.9.3 Receive Clock Mode Register

Name: RCMR

Access Type: Read/Write

Offset: 0x10

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| PERIOD |
23 22 21 20 19 18 17 16

| STTDLY |
15 14 13 12 11 10 9 8

| - - | - | STOP START |
7 6 5 4 3 2 1 0

| CKG | CKI | CKO | CKS |

» PERIOD: Receive Period Divider Selection

This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.

e STTDLY: Receive Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.

Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.

e STOP: Receive Stop Selection

0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.

1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.

 START: Receive Start Selection

START Receive Start

0x0 Continuous, as soqn as the receiver is enabled, and immediately after the end of
transfer of the previous data.

0x1 Transmit start
0x2 Detection of a low level on RX_FRAME_SYNC signal
0x3 Detection of a high level on RX_FRAME_SYNC signal
0x4 Detection of a falling edge on RX_FRAME_SYNC signal
0x5 Detection of a rising edge on RX_FRAME_SYNC signal
0x6 Detection of any level change on RX_FRAME_SYNC signal
0x7 Detection of any edge on RX_FRAME_SYNC signal
0x8 Compare 0

0x9-0xF Reserved

AImEl@ 278

32058K AVR32-01/12



* CKG: Receive Clock Gating Selection

CKG Receive Clock Gating

0x0 None, continuous clock

0x1 Receive Clock enabled only if RX_FRAME_SYNC Low
0x2 Receive Clock enabled only if RX_FRAME_SYNC High
0x3 Reserved

* CKI: Receive Clock Inversion

0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal out-
put is shifted out on Receive Clock rising edge.

1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal out-
put is shifted out on Receive Clock falling edge.

CKI affects only the Receive Clock and not the output clock signal.

* CKO: Receive Clock Output Mode Selection

CKO Receive Clock Output Mode RX_CLOCK pin

0x0 None Input-only

0x1 Continuous Receive Clock Output

0x2 Receive Clock only during data transfers Output
0x3-0x7 Reserved

* CKS: Receive Clock Selection

CKS Selected Receive Clock
0x0 Divided Clock

0x1 TX_CLOCK Clock signal
0x2 RX_CLOCK pin

0x3 Reserved

32058K AVR32-01/12

AImEl@ 279




2594 Receive Frame Mode Register

Name: RFMR

Access Type: Read/Write

Offset: 0x14

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| FSLENHI - - - FSEDGE |
23 22 21 20 19 18 17 16

| - | FSOS | FSLEN |
15 14 13 12 11 10 9 8

. - r - ¢ - [ - 1] DATNB |
7 6 5 4 3 2 1 0

| MSBF | - | LOOP | DATLEN |

e FSLENHI: Receive Frame Sync Length High part
The four MSB of the FSLEN bitfield.

» FSEDGE: Frame Sync Edge Detection
Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.

FSEDGE Frame Sync Edge Detection

0x0 Positive Edge Detection

0x1 Negative Edge Detection

» FSOS: Receive Frame Sync Output Selection
FSOS Selected Receive Frame Sync Signal RX_FRAME_SYNC Pin
0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
0x4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output
0x6-0x7 Reserved Undefined

» FSLEN: Receive Frame Sync Length

This field defines the length of the Receive Frame Sync Signal and the number of bits sampled and stored in the Receive
Sync Data Register. When this mode is selected by the START field in the Receive Clock Mode Register, it also deter-
mines the length of the sampled data to be compared to the Compare 0 or Compare 1 register. Note: The four most
significant bits fo this bitfield are in the FSLENHI bitfield.

Pulse length is equal to ({FSLENHI,FSLEN} + 1) Receive Clock periods. Thus, if {FSLENHI,FSLEN} is O, the Receive
Frame Sync signal is generated during one Receive Clock period.

» DATNB: Data Number per Frame

AImEl@ 280

32058K AVR32-01/12



This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).

» MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is sampled first in the bit stream.

1: The most significant bit of the data register is sampled first in the bit stream.

* LOOP: Loop Mode
0: Normal operating mode.

1: RX_DATA is driven by TX_DATA, RX_FRAME_SYNC is driven by TX FRAME_SYNC and TX_CLOCK drives
RX_CLOCK.

» DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDCA assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.

AImEl@ 281

32058K AVR32-01/12



25.9.5 Transmit Clock Mode Register

Name: TCMR

Access Type: Read/Write

Offset: 0x18

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| PERIOD |
23 22 21 20 19 18 17 16

| STTDLY |
15 14 13 12 11 10 9 8

| - - | - | - START |
7 6 5 4 3 2 1 0

| CKG | CKI | CKO | CKS |

 PERIOD: Transmit Period Divider Selection

This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.

e STTDLY: Transmit Start Delay

If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.

Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emit-
ted instead of the end of TAG.

* START: Transmit Start Selection

START Transmit Start
0x0 Continuous, as soon as a word is vyritten in the THR Register (if Transmit is enabled), and immediately
after the end of transfer of the previous data.
0x1 Receive start
0x2 Detection of a low level on TX_FRAME_SYNC signal
0x3 Detection of a high level on TX_FRAME_SYNC signal
0x4 Detection of a falling edge on TX_FRAME_SYNC signal
0x5 Detection of a rising edge on TX_FRAME_SYNC signal
0x6 Detection of any level change on TX_FRAME_SYNC signal
0x7 Detection of any edge on TX_FRAME_SYNC signal
0x8 - OxF Reserved

32058K AVR32-01/12

AImEl@ 282



* CKG: Transmit Clock Gating Selection

CKG Transmit Clock Gating

0x0 None, continuous clock

0x1 Transmit Clock enabled only if TX_FRAME_SYNC Low
0x2 Transmit Clock enabled only if TX_FRAME_SYNC High
0x3 Reserved

* CKI: Transmit Clock Inversion

0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.

1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.

CKI affects only the Transmit Clock and not the output clock signal.

e CKO: Transmit Clock Output Mode Selection

CKO Transmit Clock Output Mode TX_CLOCK pin
0x0 None Input-only
0x1 Continuous Transmit Clock Output
0x2 Transmit Clock only during data transfers Output
0x3-0x7 Reserved

* CKS: Transmit Clock Selection
CKsS Selected Transmit Clock
0x0 Divided Clock
0x1 RX_CLOCK Clock signal
0x2 TX_CLOCK Pin
0x3 Reserved

32058K AVR32-01/12

AImEl@ 283




25.9.6 Transmit Frame Mode Register

Name: TFMR

Access Type: Read/Write

Offset: 0x1C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| FSLENHI | - - - FSEDGE |
23 22 21 20 19 18 17 16

| FSDEN | FSOS | FSLEN |
15 14 13 12 11 10 9 8

I - I - I - I - I DATNB |
7 6 5 4 3 2 1 0

| MSBF | - | DATDEF | DATLEN |

e FSLENHI: Transmit Frame Sync Length High part
The four MSB of the FSLEN bitfield.

» FSEDGE: Frame Sync Edge Detection
Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).

FSEDGE Frame Sync Edge Detection
0x0 Positive Edge Detection
0x1 Negative Edge Detection

FSDEN: Frame Sync Data Enable
0: The TX_DATA line is driven with the default value during the Transmit Frame Sync signal.

1: TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.

FSOS: Transmit Frame Sync Output Selection

FSOS Selected Transmit Frame Sync Signal TX_FRAME_SYNC Pin
0x0 None Input-only
0x1 Negative Pulse Output
0x2 Positive Pulse Output
0x3 Driven Low during data transfer Output
0x4 Driven High during data transfer Output
0x5 Toggling at each start of data transfer Output
0x6-0x7 Reserved Undefined

* FSLEN: Transmit Frame Sync Length

This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1. Note: The four most significant bits fo this bitfield are in the FSLENHI bitfield.

AImEl@ 284

32058K AVR32-01/12



Pulse length is equal to ({FSLENHI,FSLEN} + 1) Transmit Clock periods, i.e., the pulse length can range from 1 to 16
Transmit Clock periods. If {FSLENHI,FSLEN} is 0, the Transmit Frame Sync signal is generated during one Transmit Clock
period.

» DATNB: Data Number per frame

This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).

» MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is shifted out first in the bit stream.

1: The most significant bit of the data register is shifted out first in the bit stream.

» DATDEF: Data Default Value

This bit defines the level driven on the TX_DATA pin while out of transmission. Note that if the pin is defined as multi-drive
by the PIO Controller, the pin is enabled only if the SCC TX_DATA output is 1.

» DATLEN: Data Length

0: Forbidden value (1-bit data length not supported).

Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the

PDCA assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.

AImEl@ 285

32058K AVR32-01/12



25.9.7 SSC Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x20

Reset value: 0x00000000
31 30 29 28 27 26 25 24

| RDAT |
23 22 21 20 19 18 17 16

| RDAT |
15 14 13 12 11 10 9 8

| RDAT |
7 6 5 4 3 2 1 0

| RDAT |

» RDAT: Receive Data

Right aligned regardless of the number of data bits defined by DATLEN in RFMR.

32058K AVR32-01/12

ATMEL

286



25.9.8 Transmit Holding Register

Name: THR
Access Type: Write-only
Offset: 0x24
Reset value: -
31 30 29 28 27 26 25 24
| TDAT |
23 22 21 20 19 18 17 16
| TDAT |
15 14 13 12 11 10 9 8
| TDAT |
7 6 5 4 3 2 1 0
TDAT |

 TDAT: Transmit Data

Right aligned regardless of the number of data bits defined by DATLEN in TFMR.

32058K AVR32-01/12

ATMEL

287



25.9.9 Receive Synchronization Holding Register
Name: RSHR
Access Type: Read-only
Offset: 0x30
Reset value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| RSDAT |
7 6 5 4 3 2 1 0
RSDAT |

» RSDAT: Receive Synchronization Data

32058K AVR32-01/12

ATMEL

288



25.9.10 Transmit Synchronization Holding Register

Name: TSHR
Access Type: Read/Write
Offset: 0x34
Reset value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 1M 10 9 8
| TSDAT |
7 6 5 4 3 2 1 0
TSDAT |

* TSDAT: Transmit Synchronization Data

32058K AVR32-01/12

ATMEL

289



25.9.11 Receive Compare 0 Register
Name: RCOR
Access Type: Read/Write
Offset: 0x38
Reset value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| CPO |
7 6 5 4 3 2 1 0
CPO |

e CPO: Receive Compare Data 0

32058K AVR32-01/12

ATMEL

290



25.9.12 Receive Compare 1 Register
Name: RC1R
Access Type: Read/Write
Offset: 0x3C
Reset value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| CP1 |
7 6 5 4 3 2 1 0
CP1 |

e CP1: Receive Compare Data 1

32058K AVR32-01/12

ATMEL

291



25.9.13 Status Register

Name: SR

Access Type: Read-only

Offset: 0x40

Reset value: 0x000000CC
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - | RXEN [ TXEN |
15 14 13 12 11 10 9 8

| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0

| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

« RXEN: Receive Enable
0: Receive is disabled.

1: Receive is enabled.

o TXEN: Transmit Enable
0: Transmit is disabled.

1: Transmit is enabled.

* RXSYN: Receive Sync
0: An Rx Sync has not occurred since the last read of the Status Register.

1: An Rx Sync has occurred since the last read of the Status Register.

e TXSYN: Transmit Sync
0: A Tx Sync has not occurred since the last read of the Status Register.

1: A Tx Sync has occurred since the last read of the Status Register.

* CP1: Compare 1
0: A compare 1 has not occurred since the last read of the Status Register.

1: A compare 1 has occurred since the last read of the Status Register.

* CPO: Compare 0
0: A compare 0 has not occurred since the last read of the Status Register.

1: A compare 0 has occurred since the last read of the Status Register.

» RXBUFF: Receive Buffer Full
0: RCR or RNCR have a value other than 0.

1: Both RCR and RNCR have a value of 0.

« ENDRX: End of Reception
0: Data is written on the Receive Counter Register or Receive Next Counter Register.

AImEl@ 292

32058K AVR32-01/12



1: End of PDCA transfer when Receive Counter Register has arrived at zero.

* OVRUN: Receive Overrun
0: No data has been loaded in RHR while previous data has not been read since the last read of the Status Register.

1: Data has been loaded in RHR while previous data has not yet been read since the last read of the Status Register.

« RXRDY: Receive Ready
0: RHR is empty.

1: Data has been received and loaded in RHR.

e TXBUFE: Transmit Buffer Empty
0: TCR or TNCR have a value other than 0.

1: Both TCR and TNCR have a value of 0.

 ENDTX: End of Transmission
0: The register TCR has not reached 0 since the last write in TCR or TNCR.

1: The register TCR has reached 0 since the last write in TCR or TNCR.

e TXEMPTY: Transmit Empty
0: Data remains in THR or is currently transmitted from TSR.

1: Last data written in THR has been loaded in TSR and last data loaded in TSR has been transmitted.

» TXRDY: Transmit Ready
0: Data has been loaded in THR and is waiting to be loaded in the Transmit Shift Register (TSR).

1: THR is empty.

AImEl@ 293

32058K AVR32-01/12



25.9.14 Interrupt Enable Register

Name: IER
Access Type: Write-only
Offset: 0x44
Reset value: -
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - | - | - | - | RXSYN | TXSYN CP1 | CPO |
7 6 5 4 3 2 1 0
| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX TXEMPTY | TXRDY |
* RXSYN: Rx Sync Interrupt Enable
0: No effect.
: Enables the Rx Sync Interrupt.
* TXSYN: Tx Sync Interrupt Enable
0: No effect.
: Enables the Tx Sync Interrupt.
* CP1: Compare 1 Interrupt Enable
0: No effect.
: Enables the Compare 1 Interrupt.
* CPO: Compare O Interrupt Enable
0: No effect.
: Enables the Compare 0 Interrupt.
 RXBUFF: Receive Buffer Full Interrupt Enable
0: No effect.
: Enables the Receive Buffer Full Interrupt.
 ENDRX: End of Reception Interrupt Enable
0: No effect.
: Enables the End of Reception Interrupt.
* OVRUN: Receive Overrun Interrupt Enable
0: No effect.
: Enables the Receive Overrun Interrupt.
« RXRDY: Receive Ready Interrupt Enable
0: No effect.
AIMEL
Y 5

32058K AVR32-01/12



1: Enables the Receive Ready Interrupt.

* TXBUFE: Transmit Buffer Empty Interrupt Enable
0: No effect.

1: Enables the Transmit Buffer Empty Interrupt

« ENDTX: End of Transmission Interrupt Enable
0: No effect.

1: Enables the End of Transmission Interrupt.

e TXEMPTY: Transmit Empty Interrupt Enable
0: No effect.

1: Enables the Transmit Empty Interrupt.

e TXRDY: Transmit Ready Interrupt Enable
0: No effect.

1: Enables the Transmit Ready Interrupt.

AImEl@ 295

32058K AVR32-01/12



25.9.15 Interrupt Disable Register

Name: IDR
Access Type: Write-only
Offset: 0x48
Reset value: -

31 30 29 28 27 26 25 24
I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16
I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8
| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0
| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

* RXSYN: Rx Sync Interrupt Enable
0: No effect.

1: Disables the Rx Sync Interrupt.

e TXSYN: Tx Sync Interrupt Enable
0: No effect.

1: Disables the Tx Sync Interrupt.

* CP1: Compare 1 Interrupt Disable
0: No effect.

1: Disables the Compare 1 Interrupt.

* CPO: Compare O Interrupt Disable
0: No effect.

1: Disables the Compare 0 Interrupt.

 RXBUFF: Receive Buffer Full Interrupt Disable
0: No effect.

1: Disables the Receive Buffer Full Interrupt.

» ENDRX: End of Reception Interrupt Disable
0: No effect.

1: Disables the End of Reception Interrupt.

* OVRUN: Receive Overrun Interrupt Disable
0: No effect.

1: Disables the Receive Overrun Interrupt.

« RXRDY: Receive Ready Interrupt Disable
0: No effect.

AImEl@ 296

32058K AVR32-01/12



1: Disables the Receive Ready Interrupt.

» TXBUFE: Transmit Buffer Empty Interrupt Disable
0: No effect.

1: Disables the Transmit Buffer Empty Interrupt.

« ENDTX: End of Transmission Interrupt Disable
0: No effect.

1: Disables the End of Transmission Interrupt.

e TXEMPTY: Transmit Empty Interrupt Disable
0: No effect.

1: Disables the Transmit Empty Interrupt.

e TXRDY: Transmit Ready Interrupt Disable
0: No effect.

1: Disables the Transmit Ready Interrupt.

AImEl@ 297

32058K AVR32-01/12



25.9.16 Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x4C

Reset value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

| - | - | - | - | RXSYN | TXSYN | CP1 | CPO |
7 6 5 4 3 2 1 0

| RXBUFF | ENDRX | OVRUN | RXRDY | TXBUFE | ENDTX | TXEMPTY | TXRDY |

 RXSYN: Rx Sync Interrupt Mask
0: The Rx Sync Interrupt is disabled.

1: The Rx Sync Interrupt is enabled.

e TXSYN: Tx Sync Interrupt Mask
0: The Tx Sync Interrupt is disabled.

1: The Tx Sync Interrupt is enabled.

* CP1: Compare 1 Interrupt Mask
0: The Compare 1 Interrupt is disabled.

1: The Compare 1 Interrupt is enabled.

* CPO: Compare O Interrupt Mask
0: The Compare 0 Interrupt is disabled.

1: The Compare 0 Interrupt is enabled.

» RXBUFF: Receive Buffer Full Interrupt Mask
0: The Receive Buffer Full Interrupt is disabled.

1: The Receive Buffer Full Interrupt is enabled.

 ENDRX: End of Reception Interrupt Mask
0: The End of Reception Interrupt is disabled.

1: The End of Reception Interrupt is enabled.

* OVRUN: Receive Overrun Interrupt Mask
0: The Receive Overrun Interrupt is disabled.

1: The Receive Overrun Interrupt is enabled.

« RXRDY: Receive Ready Interrupt Mask
0: The Receive Ready Interrupt is disabled.

AImEl@ 298

32058K AVR32-01/12



26. Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
Rev. 4.0.0.2

26.1 Features

* Programmable Baud Rate Generator
* 5-t0 9-bit Full-duplex Synchronous or Asynchronous Serial Communications
— 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode
— Parity Generation and Error Detection
Framing Error Detection, Overrun Error Detection
MSB- or LSB-first
Optional Break Generation and Detection
By 8 or by 16 Over-sampling Receiver Frequency
— Optional Hardware Handshaking RTS-CTS
— Receiver Time-out and Transmitter Timeguard
— Optional Multidrop Mode with Address Generation and Detection
* RS485 with Driver Control Signal
* ISO7816, T=0or T =1 Protocols for Interfacing with Smart Cards
— NACK Handling, Error Counter with Repetition and Iteration Limit
* IrDA Modulation and Demodulation
— Communication at up to 115.2 Kbps
* SPI Mode
— Master or Slave
— Serial Clock Programmable Phase and Polarity
— SPI Serial Clock (CLK) Frequency up to Internal Clock Frequency CLK_USART/4
* Test Modes
— Remote Loopback, Local Loopback, Automatic Echo
* Supports Connection of Two Peripheral DMA Controller Channels (PDC)
— Offers Buffer Transfer without Processor Intervention

26.2 Overview

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programma-
ble (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit han-
dling in reception and transmission.

The USART features three test modes: remote loopback, local loopback and automatic echo.

The USART supports specific operating modes providing interfaces on RS485 and SPI buses,
with ISO7816 T = 0 or T = 1 smart card slots and infrared transceivers. The hardware handshak-
ing feature enables an out-of-band flow control by automatic management of the pins RTS and
CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer manage-
ment without any intervention of the processor.

AImEl@ 299

32058K AVR32-01/12



26.3 Block Diagram

Figure 26-1. USART Block Diagram

Peripheral DMA
Controller
Channel Channel
USART PIO
Controller
v
< <—>|:| RXD
Receiver
> <—>|:| RTS
USART > < <—>| TXD
INTC
P Interrupt Transmitter
< <—>|:| CcTS
CLK_USART
= » BaudRate <> 4_>|:| CLK
l Generator
Power DIV CLK_USART/DIV
Manager
User
Interface
Peripheral bus *
- -

AImEl@ 300

32058K AVR32-01/12



26.4 Application Block Diagram

Figure 26-2. Application Block Diagram

PPP IrLAP
] Field Bus EMV SPI
Modem Serial Driver Driver IrDA Driver
Driver Driver Driver
USART
RS232 RS232 RS485 Smart IrDA SPI
Drivers Drivers Drivers Card Transceivers | | Transceiver
| Slot
Modem
T Serial Differential
PSTN Port Bus

32058K  AVR32-01/12

ATMEL

301



26.5 1/O Lines Description

Table 26-1. 1/O Line Description
Name Description Type Active Level
CLK Serial Clock 1/0
Transmit Serial Data
TXD or Master Out Slave In (MOSI) in SPI Master Mode 110
or Master In Slave Out (MISO) in SPI Slave Mode
Receive Serial Data
RXD or Master In Slave Out (MISO) in SPI Master Mode Input
or Master Out Slave In (MOSI) in SPI Slave Mode
Clear to Send
CTS Input Low
or Slave Select (NSS) in SPI Slave Mode P
Request to Send
RTS Output L
o Slave Select (NSS) in SPI Master Mode uipd ow
302

32058K  AVR32-01/12

ATMEL



26.6 Product Dependencies

26.6.1 I/O Lines

The pins used for interfacing the USART may be multiplexed with the PIO lines. The program-
mer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If /O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.

To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory. If the hardware handshaking feature or Modem mode is used, the internal pull up
on TXD must also be enabled.

26.6.2 Power Manager (PM)

26.6.3 Interrupt

32058K  AVR32-01/12

The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Manager (PM) before using the USART. However, if the application does not require
USART operations, the USART clock can be stopped when not needed and be restarted later.
In this case, the USART will resume its operations where it left off.

Configuring the USART does not require the USART clock to be enabled.

The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the USART interrupt requires the INTC to be programmed first. Note that it is
not recommended to use the USART interrupt line in edge sensitive mode.

AImEl@ 303



26.7 Functional Description

The USART is capable of managing several types of serial synchronous or asynchronous
communications.

It supports the following communication modes:

*5- to 9-bit full-duplex asynchronous serial communication
—MSB- or LSB-first
-1, 1.5 or 2 stop bits
—Parity even, odd, marked, space or none
—By 8 or by 16 over-sampling receiver frequency
—Optional hardware handshaking
—Optional break management
—Optional multidrop serial communication
*High-speed 5- to 9-bit full-duplex synchronous serial communication
—MSB- or LSB-first
—1 or 2 stop bits
—Parity even, odd, marked, space or none
—By 8 or by 16 over-sampling frequency
—Optional hardware handshaking
—Optional break management
—Optional multidrop serial communication
*RS485 with driver control signal
+ISO7816, TO or T1 protocols for interfacing with smart cards
—NACK handling, error counter with repetition and iteration limit
*InfraRed IrDA Modulation and Demodulation

* SPI Mode
— Master or Slave
— Serial Clock Programmable Phase and Polarity
— SPI Serial Clock (CLK) Frequency up to Internal Clock Frequency CLK_USART/4
*Test modes

—Remote loopback, local loopback, automatic echo

AImEl@ 304

32058K  AVR32-01/12



26.7.1 Baud Rate Generator

The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.

The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (MR) between:

*the CLK_USART
+a division of the CLK_USART, the divider being product dependent, but generally set to 8

the external clock, available on the CLK pin

The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (BRGR). If CD is programmed at 0, the Baud Rate Gener-
ator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.

If the external CLK clock is selected, the duration of the low and high levels of the signal pro-
vided on the CLK pin must be longer than a CLK_USART period. The frequency of the signal
provided on CLK must be at least 4.5 times lower than CLK_USART.

Figure 26-3. Baud Rate Generator

USCLKS E
CLK_USART Ch LK

CLK

[}

- O

CLK_USART/DIV D
16-bit Counter
Reserved 2 o3 FID] —
3 p | OVER | [ sme |
0—» o Sampling 0
Divider
BaudRate
1 > Clock

SYNC )
Sampling
USCLKS=3 » Clock

26.7.1.1 Baud Rate in Asynchronous Mode

32058K  AVR32-01/12

If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (BRGR). The
resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in MR.

If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.

The following formula performs the calculation of the Baud Rate.

SelectedClock

Baudrate = —electedClock
audrate = g2 —over)cb)

AImEl@ 305



This gives a maximum baud rate of CLK_USART divided by 8, assuming that CLK_USART is
the highest possible clock and that OVER is programmed at 1.

26.7.1.2 Baud Rate Calculation Example
Table 26-2 on page 306 shows calculations of CD to obtain a baud rate at 38400 bauds for dif-
ferent source clock frequencies. This table also shows the actual resulting baud rate and the

error.

Table 26-2. Baud Rate Example (OVER = 0)

Expected Baud
Source Clock Rate Calculation Result CD Actual Baud Rate Error
MHz Bit/s Bit/s
3686 400 38 400 6.00 6 38 400.00 0.00%
4 915 200 38 400 8.00 8 38 400.00 0.00%
5000 000 38 400 8.14 8 39 062.50 1.70%
7 372 800 38 400 12.00 12 38 400.00 0.00%
8 000 000 38 400 13.02 13 38 461.54 0.16%
12 000 000 38 400 19.53 20 37 500.00 2.40%
12 288 000 38 400 20.00 20 38 400.00 0.00%
14 318 180 38 400 23.30 23 38908.10 1.31%
14 745 600 38 400 24.00 24 38 400.00 0.00%
18 432 000 38 400 30.00 30 38 400.00 0.00%
24 000 000 38 400 39.06 39 38 461.54 0.16%
24 576 000 38 400 40.00 40 38 400.00 0.00%
25 000 000 38 400 40.69 40 38 109.76 0.76%
32 000 000 38 400 52.08 52 38 461.54 0.16%
32768 000 38 400 53.33 53 38 641.51 0.63%
33 000 000 38 400 53.71 54 38 194.44 0.54%
40 000 000 38 400 65.10 65 38 461.54 0.16%
50 000 000 38 400 81.38 81 38 580.25 0.47%
60 000 000 38 400 97.66 98 38 265.31 0.35%
70 000 000 38 400 113.93 114 38 377.19 0.06%

32058K  AVR32-01/12

The baud rate is calculated with the following formula:

BaudRate = (CLKUSART)/CD x 16

The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.

Error = 1 —(

ExpectedBaudRate)
ActualBaudRate

ATMEL

306



26.7.1.3 Fractional Baud Rate in Asynchronous Mode

The Baud Rate generator previously defined is subject to the following limitation: the output fre-
quency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the clock
divider. This feature is only available when using USART normal mode. The fractional Baud
Rate is calculated using the following formula:

SelectedClock
(8(2 - Over)(CD + %D

Baudrate =

The modified architecture is presented below:

Figure 26-4. Fractional Baud Rate Generator

B

@ III Modulus

Control

e

CLK_USART |\ LK
CLK_USART/DIV 1 {:I
Reserved 16-bit Counter glitch-free
CLK =12 ) FIDI
logic [ p{>1 SYNC
[] 3 OVER [_swe ]
1 0
0—»{0 Sampling 0
4 Divider
BaudRate
1 > Clock

SYNC Sampling
USCLKS =3 »  Clock
26.7.1.4 Baud Rate in Synchronous Mode or SPI Mode

If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in BRGR.

BaudRate = SelectedClock
CD

In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART CLK pin. No division is active. The value written in BRGR

AImEl@ 307

32058K  AVR32-01/12



has no effect. The external clock frequency must be at least 4.5 times lower than the system

clock.

When either the external clock CLK or the internal clock divided (CLK_USART/DIV) is selected,
the value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on
the CLK pin. If the internal clock CLK_USART is selected, the Baud Rate Generator ensures a

50:50 duty cycle on the CLK pin, even if the value programmed in CD is odd.

26.7.1.5 Baud Rate in ISO 7816 Mode
The 1ISO7816 specification defines the bit rate with the following formula:
B = % x f
where:
*B is the bit rate
*Di is the bit-rate adjustment factor
*Fi is the clock frequency division factor
+f is the 1ISO7816 clock frequency (Hz)
Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 26-3 on page
308.
Table 26-3.  Binary and Decimal Values for Di
DI field 0001 0010 0011 0100 0101 0110 1000 1001
Di (decimal) 1 2 4 8 16 32 12 20
Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 26-4 on page
308.
Table 26-4.  Binary and Decimal Values for Fi
FI field 0000 0001 0010 0011 0100 0101 0110 1001 1010 1011 1100 1101
Fi (decimal 372 372 558 744 1116 1488 1860 512 768 1024 1536 2048
Table 26-5 on page 308 shows the resulting Fi/Di Ratio, which is the ratio between the 1ISO7816
clock and the baud rate clock.
Table 26-5. Possible Values for the Fi/Di Ratio
Fi/Di 372 558 774 1116 1488 1806 512 768 1024 1536 2048
1 372 558 744 1116 1488 1860 512 768 1024 1536 2048
2 186 279 372 558 744 930 256 384 512 768 1024
4 93 139.5 186 279 372 465 128 192 256 384 512
8 46.5 69.75 93 139.5 186 232.5 64 96 128 192 256
16 23.25 34.87 46.5 69.75 93 116.2 32 48 64 96 128
32 11.62 17.43 23.25 34.87 46.5 58.13 16 24 32 48 64
12 31 46.5 62 93 124 155 42.66 64 85.33 128 170.6
20 18.6 27.9 37.2 55.8 74.4 93 25.6 38.4 51.2 76.8 102.4

If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (MR) is first divided by the value programmed in the field CD in the Baud Rate

32058K  AVR32-01/12

ATMEL

308



Generator Register (BRGR). The resulting clock can be provided to the CLK pin to feed the
smart card clock inputs. This means that the CLKO bit can be set in MR.

This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (FIDI). This is performed by the Sampling Divider, which performs a division by up to
2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the user
must program the FI_DI_RATIO field to a value as close as possible to the expected value.

The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).

Figure 26-5 on page 309 shows the relation between the Elementary Time Unit, corresponding
to a bit time, and the ISO 7816 clock.

Figure 26-5. Elementary Time Unit (ETU)

FI_DI_RATIO
1ISO7816 Clock Cycles
< >

ISO7816 Clock
on CLK
ISO7816 /O Line

on TXD (J (J

1ETU

26.7.2 Receiver and Transmitter Control

After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (CR). However, the receiver registers can be programmed before the
receiver clock is enabled.

After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (CR). However, the transmitter registers can be programmed before being
enabled.

The Receiver and the Transmitter can be enabled together or independently.

At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register (CR).
The software resets clear the status flag and reset internal state machines but the user interface
configuration registers hold the value configured prior to software reset. Regardless of what the
receiver or the transmitter is performing, the communication is immediately stopped.

The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in CR. If the receiver is disabled during a character reception, the USART
waits until the end of reception of the current character, then the reception is stopped. If the
transmitter is disabled while it is operating, the USART waits the end of transmission of both the
current character and character being stored in the Transmit Holding Register (THR). If a time-
guard is programmed, it is handled normally.

AImEl@ 309

32058K  AVR32-01/12



26.7.3 Synchronous and Asynchronous Modes

26.7.3.1 Transmitter Operations

The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The parity
bit is set according to the PAR field in MR. The even, odd, space, marked or none parity bit can
be configured. The MSBF field in MR configures which data bit is sent first. If written at 1, the
most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is
selected by the NBSTOP field in MR. The 1.5 stop bit is supported in asynchronous mode only.

Figure 26-6. Character Transmit

Example:

Baud Rate
Clock

TXD

Figure 26-7. Transmitter
Baud Rate
Clock

TXD

Write
US_THR

TXRDY

TXEMPTY

32058K  AVR32-01/12

8-bit, Parity Enabled One Stop

SpEREEEEEEEEEEEEEREN

‘ Start DO D1 D2 D3 D4 D5 D6 D7 | Parity Stop
Bit Bit Bit

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
THR while TXRDY is low has no effect and the written character is lost.

Status

Juivivuvuivviuirivdiuyuu
JEEEEEEEEEEpEEEEEEEEER

St ny by p2 D3 D4 D5 De D7 FAYStRSEt Ly ny hy B3 ps ps pe pr PRNiyStop

Bit Bit Bit Bit Bit  Bit

1 1
U L |
B

AImEl@ 310



26.7.3.2 Manchester Encoder

When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester Il format. To enable this mode, set the MAN field in the
MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmitted
as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the midpoint of
each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the receiver has
more error control since the expected input must show a change at the center of a bit cell. An
example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes to 10 01 10
1001 01 01 10, assuming the default polarity of the encoder. Figure 26-8 on page 311 illustrates
this coding scheme.

Figure 26-8. NRZ to Manchester Encoding

32058K  AVR32-01/12

Manchester

NRZ
encoded

o IS s I SN
S e L LT L

data

1 0

The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the MAN register, the field
TX _PL is used to configure the preamble length. Figure 26-9 on page 312 illustrates and defines
the valid patterns. To improve flexibility, the encoding scheme can be configured using the
TX_MPOL field in the MAN register. If the TX_MPOL field is set to zero (default), a logic zero is
encoded with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If
the TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition and a logic
zero is encoded with a zero-to-one transition.

AImEl@ 311



Figure 26-9. Preamble Patterns, Default Polarity Assumed

Manchester ! I ! ! ! ! ! ! e -
encoded
data

Manchester ! ! ! ! ! ! ! ! L
encoded SFD DATA
data Ixd J L4 4 —J 4 4 4 4 =1 _ —_"__.

8 bit width "ALL_ZERO" Preamble

Manchester ‘' ' e e e - - -

| | | | |
| | | | | | | |

encoded Txdl | : | : | L L] s | para
| | | | | | |

data T T e

8 bit width "ZERO_ONE" Preamble

Manchester : : : : : : : : ______
encoded A N i B i B e N
I I I I I I I I

data Txd

8 bit width "ONE_ZERO" Preamble

A start frame delimiter is to be configured using the ONEBIT field in the MR register. It consists
of a user-defined pattern that indicates the beginning of a valid data. Figure 26-10 on page 313
illustrates these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT
at 1), a logic zero is Manchester encoded and indicates that a new character is being sent seri-
ally on the line. If the start frame delimiter is a synchronization pattern also referred to as sync
(ONEBIT at 0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new
character. The sync waveform is in itself an invalid Manchester waveform as the transition
occurs at the middle of the second bit time. Two distinct sync patterns are used: the command
sync and the data sync. The command sync has a logic one level for one and a half bit times,
then a transition to logic zero for the second one and a half bit times. If the MODSYNC field in
the MR register is set to 1, the next character is a command. If it is set to 0, the next character is
a data. When direct memory access is used, the MODSYNC field can be immediately updated
with a modified character located in memory. To enable this mode, VAR_SYNC field in MR reg-
ister must be set to 1. In this case, the MODSYNC field in MR is bypassed and the sync
configuration is held in the TXSYNH in the THR register. The USART character format is modi-
fied and includes sync information.

AImEl@ 312

32058K  AVR32-01/12



AT32UC3A

Figure 26-10. Start Frame Delimiter

Preamble Length

issetto 0
—_——
SFD
Manchester : ! o ____
encoded | | DATA
data Txd : 0 T T T T
<«——> One bit start frame delimiter
I I SFD I I I
Manchester | i | e
encoded DATA
Txd | I I | I |
data | | | | T T T T TS T T T
Command Sync
SFD start frame delimiter
Manchester : ! : : | e m -
encoded | | | DATA
data Txd : . : """"""""

Data Sync
start frame delimiter

26.7.3.3 Drift Compensation

Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the MAN register must be
set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered as nor-
mal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock cycles
before the expected edge, then the current period is shortened by one clock cycle. If the RXD
event is between 2 and 3 clock cycles after the expected edge, then the current period is length-
ened by one clock cycle. These intervals are considered to be drift and so corrective actions are
automatically taken.

Figure 26-11. Bit Resynchronization

I
Oversampling
16x Clock
| WA

1

I I
I | | I
Sampling | |
point T f T I T
I
I I i | I
| Expected edge |
< >I< Synchro. »I< Tolerance >I( Sync >k Synchro. >
Synchro. Jump Jump Error
Error
26.7.3.4 Asynchronous Receiver

If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver over-
samples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (MR).

AImEl@ 313

32058K  AVR32-01/12



The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.

If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.

The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization
mechanism only, the number of stop bits has no effect on the receiver as it considers only one
stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the
transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking
for a new start bit so that resynchronization can also be accomplished when the transmitter is
operating with one stop bit.

Figure 26-12 on page 314 and Figure 26-13 on page 314 illustrate start detection and character
reception when USART operates in asynchronous mode.

Figure 26-12. Asynchronous Start Detection

s T

w11

Baud Rat

ol | | |
Sampling ||||||||||||||||||||||||||||||||||||||||||||||||||||
Clock (x16)

wo [

L

10 11 12 13 14 15 16D

oo

-

N —
[N r—
N qe—
O —
O) —
~N —
00—
O —

0
Start Sampling

RXD ‘|'|

~—
[ —
—
N —
w —r
A —

Start
Rejection

Figure 26-13. Asynchronous Character Reception

32058K  AVR32-01/12

Baud Rate

Example: 8-bit, Parity Enabled

Clock JEpEEEEEREREEEEEEEN
oo L T T T T[T T T ]

Start
Detection

16 16 16 16 16 16 16 16 16 16
samples|samples|samples|samples|samples|samples|samples|samples|samples|samples

DO D1 D2 D3 D4 D5 D6 D7 Parity ~ Stop
Bit Bit

AImEl@ 314



26.7.3.5 Manchester Decoder

When the MAN field in MR register is set to 1, the Manchester decoder is enabled. The decoder
performs both preamble and start frame delimiter detection. One input line is dedicated to Man-
chester encoded input data.

An optional preamble sequence can be defined, its length is user-defined and totally indepen-
dent of the emitter side. Use RX_PL in MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addi-
tion, the polarity of the input stream is programmable with RX_MPOL field in MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in MAN. See Figure 26-9 on page 312 for available preamble patterns.

Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled dur-
ing one quarter of a bit time at zero, a start bit is detected. See Figure 26-14 on page 315.. The
sample pulse rejection mechanism applies.

Figure 26-14. Asynchronous Start Bit Detection

32058K  AVR32-01/12

Sampling

Clock ||||||||||||||||||||||||||||||||||||||||||||||||
(16 x) i
Manchester ]
encoded !
data Txd: ||| |
I
I

T T T Start
Detection

1 2 3 4

The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.

If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 26-15 on page
316 illustrates Manchester pattern mismatch. When incoming data stream is passed to the
USART, the receiver is also able to detect Manchester code violation. A code violation is a lack
of transition in the middle of a bit cell. In this case, MANE flag in CSR register is raised. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1. See Figure 26-16 on page
316 for an example of Manchester error detection during data phase.

AImEl@ 315



AT32UC3A

Figure 26-15. Preamble Pattern Mismatch

Preamble Mismatch Preamble Mismatch
Manchester coding error invalid pattern

.

I
Manchester : ! !
I

| |
| L
encoded | | | | ! | | | ! | ! | ! SFD DATA
data Txd 1 | | [ Bl Bt LA
| | | |
1 1 1 1

Preamble Length is set to 8

Figure 26-16. Manchester Error Flag

Preamble Length
is setto 4

s Elementary character bit time
FD
Manchester : ! I I : > I
encoded | | | | | | | | | | | | | | | | | | |
data d : I I I : I
| | | | |Entering USART character area |
I T

arowgcons {4 PP QPP EEEEEEELS
N

Preamble subpacket Manchester

and Start Frame Delimiter Coding Error

were successfully detected
decoded

When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR
field in the RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to O if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.

As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-to-
one transition.

26.7.3.6 Radio Interface: Manchester Encoded USART Application

This section describes low data rate RF transmission systems and their integration with a Man-
chester encoded USART. These systems are based on transmitter and receiver ICs that support
ASK and FSK modulation schemes.

The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 26-17 on page 317.

AImEl@ 316

32058K  AVR32-01/12



AT32UC3A

Figure 26-17. Manchester Encoded Characters RF Transmission

Fup frequency Carrier j > > >

ASK/FSK

Upstream Receiver
Upstream T A
Emitter vCO ~ Serial
RF filter Configuration
i
Interface
Demod
Manchester |__] USART
Fdown frequency Carrier bi-dir decoder Receiver
( ( line
ASK/FSK
downstream transmitter
Downstream Manchester |_| USART
it encoder Emitter
Receiver PA
RF filter
Mod
VCO

The USART module is configured as a Manchester encoder/decoder. Looking at the down-
stream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, pre-
amble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 26-18 on page 317
for an example of ASK modulation scheme. When a logic one is sent to the ASK modulator, the
power amplifier, referred to as PA, is enabled and transmits an RF signal at downstream fre-
quency. When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is
activated, two different frequencies are used to transmit data. When a logic 1 is sent, the modu-
lator outputs an RF signal at frequency FO and switches to F1 if the data sent is a 0. See Figure
26-19 on page 318.

From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver
switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a
user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.

Figure 26-18. ASK Modulator Output

1 1 0

NRZ stream

Manchester
encoded !
data
default polarity Txd
unipolar output

ASK Modulator
Output
Uptstream Frequency FO

AImEl@ 317

32058K  AVR32-01/12



Figure 26-19. FSK Modulator Output

1 1 0 1 0 1 1 1

NRZ stream ‘ :
Manchester T ‘
encoded ! ! !
data Txd | 4|

default polarity |
unipolar output I

FSK Modulator !
Output
Uptstream Frequencies
[FO, FO+offset]

26.7.4 Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.

Configuration fields and bits are the same as in asynchronous mode.

Figure 26-20 on page 318 illustrates a character reception in synchronous mode.

Figure 26-20. Synchronous Mode Character Reception
Example: 8-bit, Parity Enabled 1 Stop

Baud Rate

- mmmmmmmmﬂ_p
%0 T | T T T T T T T T[]

Sampling

Start DO D1 D2 D3 D4 D5 D6 D7 Stop Bit
Parity Bit

26.7.4.1 Receiver Operations

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into
RHR and overwrites the previous one. The OVRE bit is cleared by writing the Control Register
(CR) with the RSTSTA (Reset Status) bit at 1.

AImEl@ 318

32058K  AVR32-01/12



AT32UC3A

Figure 26-21. Receiver Status

Baud Rate
Clock
o | [T T T T T TTTILITTTITTITTIT]
Se" Do D1 D2 D3 D4 D5 D6 D7 CaYSPPSET po D1 D2 D3 D4 Ds De D7 PAYSPP
RSTSTA=1
Write
US_CR

Read
US_RHR

RXRDY

!
L
OVRE _| |

AImEl@ 319

32058K  AVR32-01/12



26.7.42  Parity

32058K  AVR32-01/12

The USART supports five parity modes selected by programming the PAR field in the Mode
Register (MR). The PAR field also enables the Multidrop mode, see "Multidrop Mode” on page
321. Even and odd parity bit generation and error detection are supported.

If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a num-
ber of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sam-
pled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.

Table 26-6 on page 320 shows an example of the parity bit for the character 0x41 (character
ASCII “A”) depending on the configuration of the USART. Because there are two bits at 1, 1 bit is
added when a parity is odd, or 0 is added when a parity is even.

Table 26-6.  Parity Bit Examples

Character Hexa Binary Parity Bit Parity Mode
A 0x41 0100 0001 1 Odd
A 0x41 0100 0001 0 Even
A 0x41 0100 0001 1 Mark
A 0x41 0100 0001 0 Space
A 0x41 0100 0001 None None

When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (CSR). The PARE bit can be cleared by writing the Control Register (CR) with the RST-
STA bit at 1. Figure 26-22 on page 321 illustrates the parity bit status setting and clearing.

AImEl@ 320



AT32UC3A

Figure 26-22. Parity Error

Baud Rate
Clock Illlllllllllllllllllll |||||||||||||
R0 ] [TTTTTTTT00

Start Bad Stpp
Bit DO D1 D2 D3 D4 D5 D6 D7 Parity Bit
Bit RSTSTA =1
Write T

US_CR

PARE |_
RXRDY _|

26.7.4.3 Multidrop Mode

If the PAR field in the Mode Register (MR) is programmed to the value 0x6 or 0x07, the USART
runs in Multidrop Mode. This mode differentiates the data characters and the address charac-
ters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the parity bit
at1.

If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.

To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.

The transmitter sends an address byte (parity bit set) when SENDA is written to CR. In this case,
the next byte written to THR is transmitted as an address. Any character written in THR without
having written the command SENDA is transmitted normally with the parity at 0.

26.7.4.4 Transmitter Timeguard

The timeguard feature enables the USART interface with slow remote devices.

The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.

The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Regis-
ter (TTGR). When this field is programmed at zero no timeguard is generated. Otherwise, the
transmitter holds a high level on TXD after each transmitted byte during the number of bit peri-
ods programmed in TG in addition to the number of stop bits.

As illustrated in Figure 26-23 on page 322, the behavior of TXRDY and TXEMPTY status bits is
modified by the programming of a timeguard. TXRDY rises only when the start bit of the next
character is sent, and thus remains at 0 during the timeguard transmission if a character has
been written in THR. TXEMPTY remains low until the timeguard transmission is completed as
the timeguard is part of the current character being transmitted.

AImEl@ 321

32058K  AVR32-01/12



AT32UC3A

Figure 26-23. Timeguard Operations

S NnNnnnnnnnnnnppnnnnnnnnnnpnnnnnns
vo | [TTTTTTTT] HEEEEEEEN

Start Parity Stop Start Parity Stop
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit  Bit Bit DO D1 D2 D3 D4 D5 D6 D7 Bit  Bit

os i | T

TXRDY —l_l |

TXEMPTY _| _

Table 26-7 on page 322 indicates the maximum length of a timeguard period that the transmitter
can handle in relation to the function of the Baud Rate.

Table 26-7. Maximum Timeguard Length Depending on Baud Rate

Baud Rate Bit time Timeguard
Bit/sec us ms
1200 833 212.50
9600 104 26.56
14400 69.4 17.71
19200 52.1 13.28
28800 34.7 8.85
33400 29.9 7.63
56000 17.9 4.55
57600 17.4 4.43
115200 8.7 2.21

26.7.4.5 Receiver Time-out

The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (CSR) rises and can generate an interrupt, thus indicating to the driver an end of
frame.

The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (RTOR). If the TO field is programmed at 0, the
Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in CSR remains at
0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO. This counter
is decremented at each bit period and reloaded each time a new character is received. If the
counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user can either:

+ Stop the counter clock until a new character is received. This is performed by writing the
Control Register (CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state on
RXD before a new character is received will not provide a time-out. This prevents having to

AImEl@ 322

32058K  AVR32-01/12



handle an interrupt before a character is received and allows waiting for the next idle state on
RXD after a frame is received.

 Obtain an interrupt while no character is received. This is performed by writing CR with the
RETTO (Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts
counting down immediately from the value TO. This enables generation of a periodic interrupt
so that a user time-out can be handled, for example when no key is pressed on a keyboard.

If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to

obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.

If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.

Figure 26-24 on page 323 shows the block diagram of the Receiver Time-out feature.

Figure 26-24. Receiver Time-out Block Diagram

Baud Rate | TO |

Clock
16-bit
1—{b a i)@: 16-bit Time-out Value [N\
Counter
STTT0 S = TIMEOUT
Load 00—
Clear
Character
Received
RETTO

Table 26-8 on page 323 gives the maximum time-out period for some standard baud rates.

Table 26-8. Maximum Time-out Period

Baud Rate Bit Time Time-out
bit/sec us ms
600 1667 109 225
1200 833 54 613
2400 417 27 306
4 800 208 13 653
9600 104 6 827
14400 69 4 551
19200 52 3413
28800 35 2276
33400 30 1962
56000 18 1170
57600 17 1138
200000 5 328

AImEl@ 323

32058K  AVR32-01/12



26.7.4.6 Framing Error

The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.

A framing error is reported on the FRAME bit of the Channel Status Register (CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (CR) with the RSTSTA bit at 1.

Figure 26-25. Framing Error Status

Baud Rate
Clock

o L [TTTTTTTT 1]

Start ParityS&ap
Bit DO D1 D2 D3 D4 D5 D6 D7 Bit |t

RSTSTA =1
Write T
US_CR

FRAME |_
RXRDY _|

26.7.4.7 Transmit Break

The user can request the transmitter to generate a break condition on the TXD line. A break con-
dition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.

A break is transmitted by writing the Control Register (CR) with the STTBRK bit at 1. This can be
performed at any time, either while the transmitter is empty (no character in either the Shift Reg-
ister or in THR) or when a character is being transmitted. If a break is requested while a
character is being shifted out, the character is first completed before the TXD line is held low.

Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.

The break condition is removed by writing CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.

The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in CSR is at 1 and the start of the break
condition clears the TXRDY and TXEMPTY bits as if a character is processed.

Writing CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable result. All
STPBRK commands requested without a previous STTBRK command are ignored. A byte writ-
ten into the Transmit Holding Register while a break is pending, but not started, is ignored.

AImEl@ 324

32058K  AVR32-01/12



After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.

After holding the TXD line for this period, the transmitter resumes normal operations.

Figure 26-26 on page 325 illustrates the effect of both the Start Break (STTBRK) and Stop Break
(STPBRK) commands on the TXD line.

Figure 26-26. Break Transmission

Baud Rate
Clock

TXD _|

[Uiuyruvuiriuvvduivvyuvuvuvduuuut
HEEEEEEN

Start
Bit

Write
US_CR

Parity Stop
D0 D1 D2 D3 D4 D5 D6 D7 Bit Bit

STTBRK =1 STPBRK = 1

1

Break Transmission End of Break

TXRDY

TXEMPTY _|

]

26.7.4.8 Receive Break

The receiver detects a break condition when all data, parity and stop bits are low. This corre-
sponds to detecting a framing error with data at 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in CSR. This bit may be
cleared by writing the Control Register (CR) with the bit RSTSTA at 1.

An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchro-
nous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.

26.7.4.9 Hardware Handshaking

32058K  AVR32-01/12

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 26-27 on page 325.

Figure 26-27. Connection with a Remote Device for Hardware Handshaking

USART Remote
Device
TXD » RXD
RXD TXD
CTS RTS
RTS » CTS

AImEl@ 325



Setting the USART to operate with hardware handshaking is performed by writing the MODE
field in the Mode Register (MR) to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.

Figure 26-28 on page 326 shows how the receiver operates if hardware handshaking is enabled.
The RTS pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer
Full) coming from the PDC channel is high. Normally, the remote device does not start transmit-
ting while its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls,
indicating to the remote device that it can start transmitting. Defining a new buffer to the PDC
clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

Figure 26-28. Receiver Behavior when Operating with Hardware Handshaking

RXD L | L | L U | L |

RXEN = 1 RXDIS = 1
Writ

US. CR (T ‘
RTS _| /| (| |

RXBUFF | |

Figure 26-29 on page 326 shows how the transmitter operates if hardware handshaking is
enabled. The CTS pin disables the transmitter. If a character is being processing, the transmitter
is disabled only after the completion of the current character and transmission of the next char-
acter happens as soon as the pin CTS falls.

Figure 26-29. Transmitter Behavior when Operating with Hardware Handshaking

- T——

™0 U | L |

26.7.5 ISO7816 Mode

The USART features an 1ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T =0 and T = 1 protocols defined by the ISO7816 specification are supported.

Setting the USART in ISO7816 mode is performed by writing the MODE field in the Mode Regis-
ter (MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T = 1.

26.7.5.1 ISO7816 Mode Overview

The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see "Baud Rate Generator”
on page 305).

The USART connects to a smart card as shown in Figure 26-30 on page 327. The TXD line
becomes bidirectional and the Baud Rate Generator feeds the 1ISO7816 clock on the CLK pin.

AImEl@ 326

32058K  AVR32-01/12



As the TXD pin becomes bidirectional, its output remains driven by the output of the transmitter
but only when the transmitter is active while its input is directed to the input of the receiver. The
USART is considered as the master of the communication as it generates the clock.

Figure 26-30. Connection of a Smart Card to the USART

USART
CLK
CLK >
Smart
/O Card
TXD (<€ >

When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values pro-
grammed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
"USART Mode Register” on page 343 and "PAR: Parity Type” on page 345.

The USART cannot operate concurrently in both receiver and transmitter modes as the commu-
nication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.

The 1SO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the 1/O line at their negative value. The USART does not support this for-
mat and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (THR) or after reading it in the Receive Holding Register (RHR).

26.7.5.2 Protocol T=0

32058K  AVR32-01/12

In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.

If no parity error is detected, the 1/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 26-31 on page 328.

If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 26-32 on page 328. This error bit is also named NACK, for Non Acknowledge.
In this case, the character lasts 1 bit time more, as the guard time length is the same and is
added to the error bit time which lasts 1 bit time.

When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (RHR). It appropriately sets the PARE bit in the Status Register
(SR) so that the software can handle the error.

AImEl@ 327



AT32UC3A

Figure 26-31. T = 0 Protocol without Parity Error
e L L L L L L L L L e
Clock
o T T T T T T T T 7T L[ 1

Start DO D1 D2 D3 D4 D5 D6 D7 Parity Guard Guard Next
Bit Bit Time 1 Time 2 Start
Bit

Figure 26-32. T = 0 Protocol with Parity Error

g L L L L L L L L L L T LU
Clock
o [T T T T T T T 17 | ETr | ||

Start DO D1 D2 D3 D4 D5 D6 D7 Parity | Guard Guard | Start DO D1
Bit Bit |[Time 1 Time 2| Bit

Repetition

26.7.5.3 Receive Error Counter

The USART receiver also records the total number of errors. This can be read in the Number of
Error (NER) register. The NB_ERRORS field can record up to 255 errors. Reading NER auto-
matically clears the NB_ERRORS field.

26.7.5.4 Receive NACK Inhibit

The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (MR). If INACK is at 1, no error signal is driven on the I/O line
even if a parity bit is detected, but the INACK bit is set in the Status Register (SR). The INACK
bit can be cleared by writing the Control Register (CR) with the RSTNACK bit at 1.

Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.

26.7.5.5 Transmit Character Repetition

When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetition is enabled by writing the
MAX_ITERATION field in the Mode Register (MR) at a value higher than 0. Each character can
be transmitted up to eight times; the first transmission plus seven repetitions.

If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.

When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.

The ITERATION bit in CSR can be cleared by writing the Control Register with the RSIT bit at 1.

26.7.5.6 Disable Successive Receive NACK

The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (MR). The maximum num-
ber of NACK transmitted is programmed in the MAX_ITERATION field. As soon as

AImEl@ 328

32058K  AVR32-01/12



26.7.5.7 Protocol T =

26.7.6 IrDA Mode

MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.

1

When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous for-
mat with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (CSR).

The USART features an IrDA mode supplying half-duplex point-to-point wireless communica-
tion. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 26-33 on page 329. The modulator and demodulator
are compliant with the IrDA specification version 1.1 and support data transfer speeds ranging
from 2.4 Kb/s to 115.2 Kb/s.

The USART IrDA mode is enabled by setting the MODE field in the Mode Register (MR) to the
value 0x8. The IrDA Filter Register (IFR) allows configuring the demodulator filter. The USART
transmitter and receiver operate in a normal asynchronous mode and all parameters are acces-
sible. Note that the modulator and the demodulator are activated.

Figure 26-33. Connection to IrDA Transceivers

USART I'DA
Transceivers
Receiver Demodulator RXD RX j /V
TX iz Y4
Transmitter Modulator TXD

The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.

26.7.6.1 IrDA Modulation

32058K  AVR32-01/12

For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 26-9 on page 329.

Table 26-9. IrDA Pulse Duration

Baud Rate Pulse Duration (3/16)
2.4 Kb/s 78.13 us

9.6 Kb/s 19.53 ps

19.2 Kb/s 9.77 us

AImEl@ 329



Table 26-9.  IrDA Pulse Duration
Baud Rate Pulse Duration (3/16)
38.4 Kb/s 4.88 ps
57.6 Kb/s 3.26 s
115.2 Kb/s 1.63 us

Figure 26-34 on page 330 shows an example of character transmission.

Figure 26-34. IrDA Modulation

26.7.6.2

32058K  AVR32-01/12

Transmitter _l
Output 0

TXD

Start

‘|Stop

Bit

'l Bit

n

IrDA Baud Rate

< >

Bit Period

- Bit Period

Table 26-10 on page 330 gives some examples of CD values, baud rate error and pulse dura-
tion. Note that the requirement on the maximum acceptable error of +1.87% must be met.

Table 26-10. IrDA Baud Rate Error
Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time
3686 400 115 200 2 0.00% 1.63
20 000 000 115 200 11 1.38% 1.63
32 768 000 115 200 18 1.25% 1.63
40 000 000 115 200 22 1.38% 1.63
3686 400 57 600 4 0.00% 3.26
20 000 000 57 600 22 1.38% 3.26
32768 000 57 600 36 1.25% 3.26
40 000 000 57 600 43 0.93% 3.26
3686 400 38 400 6 0.00% 4.88
20 000 000 38 400 33 1.38% 4.88
32768 000 38400 53 0.63% 4.88
40 000 000 38400 65 0.16% 4.88
3686 400 19 200 12 0.00% 9.77
20 000 000 19 200 65 0.16% 9.77
32768 000 19 200 107 0.31% 9.77
40 000 000 19 200 130 0.16% 9.77

ATMEL

330



Table 26-10. IrDA Baud Rate Error (Continued)

Peripheral Clock Baud Rate CD Baud Rate Error Pulse Time
3 686 400 9 600 24 0.00% 19.53
20 000 000 9 600 130 0.16% 19.53
32768 000 9600 213 0.16% 19.53
40 000 000 9600 260 0.16% 19.53
3686 400 2400 96 0.00% 78.13
20 000 000 2400 521 0.03% 78.13
32768 000 2 400 853 0.04% 78.13

26.7.6.3 IrDA Demodulator

The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in IFR. When a falling edge is detected on the RXD pin, the
Filter Counter starts counting down at the CLK_USART speed. If a rising edge is detected on the
RXD pin, the counter stops and is reloaded with IFR. If no rising edge is detected when the
counter reaches 0, the input of the receiver is driven low during one bit time.

Figure 26-35 on page 331 illustrates the operations of the IrDA demodulator.

Figure 26-35. IrDA Demodulator Operations

CLK_USART |_|

RXD_|

]

Counter
Value

Receiver

Pt P

Accepted

Pulse
Rejected

Input

32058K  AVR32-01/12

| Driven Low During 16 Baud Rate Clock Cycles

As the IrDA mode uses the same logic as the 1ISO7816, note that the FI_DI_RATIO field in FIDI
must be set to a value higher than 0 in order to assure IrDA communications operate correctly.

AImEl@ 331



26.7.7 RS485 Mode

32058K  AVR32-01/12

The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 26-36 on page 332.

Figure 26-36. Typical Connection to a RS485 Bus

USART

RXD %
Differential

TXD Bus

RTS

The USART is set in RS485 mode by programming the MODE field in the Mode Register (MR)
to the value 0x1.

The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character com-
pletion. Figure 26-37 on page 332 gives an example of the RTS waveform during a character
transmission when the timeguard is enabled.

Figure 26-37. Example of RTS Drive with Timeguard

 TG=4
Baud Rate
e [UUUUUUUUUTUTUUUL
o | [TTTTTTTT]
s,tBai;1 DO D1 D2 D3 D4 D5 D6 D7 PgriittySéci)tp
Write T
US_THR
TXRDY —l_l
TXEMPTY _l
RTS J

AImEl@ 332



26.7.8 SPI Mode

The Serial Peripheral Interface (SPI) Mode is a synchronous serial data link that provides com-
munication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.

The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master” which controls the data
flow, while the other devices act as “slaves" which have data shifted into and out by the master.
Different CPUs can take turns being masters and one master may simultaneously shift data into
multiple slaves. (Multiple Master Protocol is the opposite of Single Master Protocol, where one
CPU is always the master while all of the others are always slaves.) However, only one slave
may drive its output to write data back to the master at any given time.

A slave device is selected when its NSS signal is asserted by the master. The USART in SPI
Master mode can address only one SPI Slave because it can generate only one NSS signal.

The SPI system consists of two data lines and two control lines:
» Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input of the slave.

» Master In Slave Out (MISO): This data line supplies the output data from a slave to the input of
the master.

» Serial Clock (CLK): This control line is driven by the master and regulates the flow of the data
bits. The master may transmit data at a variety of baud rates. The CLK line cycles once for
each bit that is transmitted.

+ Slave Select (NSS): This control line allows the master to select or deselect the slave.
26.7.8.1 Modes of Operation

The USART can operate in Master Mode or in Slave Mode.

Operation in SPI Master Mode is programmed by writing at OxE the MODE field in the Mode
Register. In this case the SPI lines must be connected as described below:

» the MOSI line is driven by the output pin TXD

+ the MISO line drives the input pin RXD

» the CLK line is driven by the output pin CLK

» the NSS line is driven by the output pin RTS

Operation in SPI Slave Mode is programmed by writing at 0xF the MODE field in the Mode Reg-
ister. In this case the SPI lines must be connected as described below:

» the MOSI line drives the input pin RXD

+ the MISO line is driven by the output pin TXD

» the CLK line drives the input pin CLK

* the NSS line drives the input pin CTS

In order to avoid unpredicted behavior, any change of the SPI Mode must be followed by a soft-
ware reset of the transmitter and of the receiver (except the initial configuration after a hardware
reset).

AImEl@ 333

32058K  AVR32-01/12



26.7.8.2 Baud Rate

In SPI Mode, the baudrate generator operates in the same way as in USART synchronous
mode: See Section “26.7.1.4” on page 307. However, there are some restrictions:

In SPI Master Mode:

* the external clock CLK must not be selected (USCLKS ... 0x3), and the bit CLKO must be set
to “1”7 in the Mode Register (MR), in order to generate correctly the serial clock on the CLK pin.

+ to obtain correct behavior of the receiver and the transmitter, the value programmed in CD of
must be superior or equal to 4.

« if the internal clock divided (CLK_USART/DIV) is selected, the value programmed in CD must
be even to ensure a 50:50 mark/space ratio on the CLK pin, this value can be odd if the
internal clock is selected (CLK_USART).

In SPI Slave Mode:

+ the external clock (CLK) selection is forced regardless of the value of the USCLKS field in the
Mode Register (MR). Likewise, the value written in BRGR has no effect, because the clock is
provided directly by the signal on the USART CLK pin.

» to obtain correct behavior of the receiver and the transmitter, the external clock (CLK)
frequency must be at least 4 times lower than the system clock.

26.7.8.3 Data Transfer

32058K  AVR32-01/12

Up to 9 data bits are successively shifted out on the TXD pin at each rising or falling edge
(depending of CPOL and CPHA) of the programmed serial clock. There is no Start bit, no Parity
bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(MR). The 9 bits are selected by setting the MODE 9 bit regardless of the CHRL field. The MSB
data bit is always sent first in SPI Mode (Master or Slave).

Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Mode Register. The clock phase is programmed with the
CPHA bit. These two parameters determine the edges of the clock signal upon which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possi-
ble combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a dif-
ferent slave.

Table 26-11. SPI Bus Protocol Mode

SPI Bus Protocol Mode CPOL CPHA
0 0 1
1 0 0
2 1 1
3 1 0

AImEl@ 334



Figure 26-38. SPI Transfer Format (CPHA=1, 8 bits per transfer)

CLK cycle (for reference)

CLK
(CPOL= 0)

CLK
(CPOL= 1)

MOSI
SPI Master ->TXD
SPI Slave ->RXD

MISO
SPI Master ->RXD
SPI Slave ->TXD

NSS

SPI Master ->RTS X

SPI Slave ->CTS

]

1

2

L]

3 4

L]

AT32UC3A

MSB

X

MSB

Figure 26-39. SPI Transfer Format (CPHA=0, 8 bits per transfer)

CLK cycle (for reference)

CLK
(CPOL= 0)

CLK
(CPOL= 1)

MOSI
SPI Master -> TXD
SPI Slave -> RXD

MISO
SPI Master -> RXD
SPI Slave -> TXD

NSS
SPI Master -> RTS
SPI Slave -> CTS

26.7.8.4

1 2 3 4 7 8

| | | | | |

| | | | | |

MSB 6 5 4 1 >< LSB

MSB 6 5 4 1 LSB

NS s
Receiver and Transmitter Control
See Section “26.7.2” on page 309.

ATMEL 335
Y )

32058K  AVR32-01/12



26.7.8.5 Character Transmission

The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY rises.

Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
THR while TXRDY is low has no effect and the written character is lost.

If the USART is in SPI Slave Mode and if a character must be sent while the Transmit Holding
Register (THR) is empty, the UNRE (Underrun Error) bit is set. The TXD transmission line stays
at high level during all this time. The UNRE bit is cleared by writing the Control Register (CR)
with the RSTSTA (Reset Status) bit at 1.

In SPI Master Mode, the slave select line (NSS) is asserted at low level 1 Tbit before the trans-
mission of the MSB bit and released at high level 1 Tbit after the transmission of the LSB bit. So,
the slave select line (NSS) is always released between each character transmission and a mini-
mum delay of 3 Thits always inserted. However, in order to address slave devices supporting the
CSAAT mode (Chip Select Active After Transfer), the slave select line (NSS) can be forced at
low level by writing the Control Register (CR) with the RTSEN bit at 1. The slave select line
(NSS) can be released at high level only by writing the Control Register (CR) with the RTSDIS
bit at 1 (for example, when all data have been transferred to the slave device).

In SPI Slave Mode, the transmitter does not require a falling edge of the slave select line (NSS)
to initiate a character transmission but only a low level. However, this low level must be present
on the slave select line (NSS) at least 1 Tbit before the first serial clock cycle corresponding to
the MSB bit.

26.7.8.6 Character Reception

When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into RHR
and overwrites the previous one. The OVRE bit is cleared by writing the Control Register (CR)
with the RSTSTA (Reset Status) bit at 1.

To ensure correct behavior of the receiver in SPI Slave Mode, the master device sending the
frame must ensure a minimum delay of 1 Tbit between each character transmission. The
receiver does not require a falling edge of the slave select line (NSS) to initiate a character
reception but only a low level. However, this low level must be present on the slave select line
(NSS) at least 1 Tbit before the first serial clock cycle corresponding to the MSB bit.

26.7.8.7 Receiver Timeout

Because the receiver baudrate clock is active only during data transfers in SPI Mode, a receiver
timeout is impossible in this mode, whatever the Time-out value is (field TO) in the Time-out
Register (RTOR).

AImEl@ 336

32058K  AVR32-01/12



26.7.9 Test Modes

The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are dis-
connected or not and reconfigured for loopback internally or externally.

26.7.9.1 Normal Mode

Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.

Figure 26-40. Normal Mode Configuration

Receiver I |

RXD

TXD

Transmitter ‘—I |

26.7.9.2 Automatic Echo Mode

Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 26-41 on page 337. Programming the transmitter has
no effect on the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver
remains active.

Figure 26-41. Automatic Echo Mode Configuration

Receiver I |

RXD

TXD

Transmitter —> 4’|:|

26.7.9.3 Local Loopback Mode

Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 26-42 on page 337. The TXD and RXD pins are not used. The RXD pin has
no effect on the receiver and the TXD pin is continuously driven high, as in idle state.

Figure 26-42. Local Loopback Mode Configuration

Receiver < I |

RXD

TXD

Transmitter 1 —’D

AImEl@ 337

32058K  AVR32-01/12



26.7.9.4 Remote Loopback Mode

32058K  AVR32-01/12

AT32UC3A

Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 26-43
on page 338. The transmitter and the receiver are disabled and have no effect. This mode

allows bit-by-bit retransmission.

Figure 26-43. Remote Loopback Mode Configuration

Receiver

1

RXD

Transmitter

ATMEL

]

TXD

]

338



26.8 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) User Interface

26.8.1 Register Mapping

Table 26-12. Register Mapping

Offset Register Name Access Reset
0x0000 Control Register CR Write-only -
0x0004 Mode Register MR Read-write -
0x0008 Interrupt Enable Register IER Write-only -
0x000C Interrupt Disable Register IDR Write-only -
0x0010 Interrupt Mask Register IMR Read-only 0x0
0x0014 Channel Status Register CSR Read-only -
0x0018 Receiver Holding Register RHR Read-only 0x0
0x001C Transmitter Holding Register THR Write-only -
0x0020 Baud Rate Generator Register BRGR Read-write 0x0
0x0024 Receiver Time-out Register RTOR Read-write 0x0
0x0028 Transmitter Timeguard Register TTGR Read-write 0x0

0x2C - 0x3C Reserved - - -
0x0040 FI DI Ratio Register FIDI Read-write 0x174
0x0044 Number of Errors Register NER Read-only -
0x0048 Reserved - - -
0x004C IrDA Filter Register IFR Read-write 0x0
0x0050 Manchester Encoder Decoder Register MAN Read-write 0x30011004

0x5C - OxF8 Reserved - - -
OxFC Version Register VERSION Read-only 0x—®

0x5C - OxFC Reserved - - -

3. Values in the Version Register vary with the version of the IP block implementation.

32058K  AVR32-01/12

ATMEL

339




26.8.2 USART Control Register

Name: CR

Access Type: Write-only

Offset: 0x0

Reset Value: -
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

| - | - | - | - | RTSDIS/RCS | RTSEN/FCS | - | - |
15 14 13 12 11 10 9 8

| RETTO | RSTNACK | RSTIT | SENDA | STTTO | STPBRK | STTBRK | RSTSTA |
7 6 5 4 3 2 1 0

| TXDIS | TXEN | RXDIS | RXEN | RSTTX | RSTRX | - | - |

* RTSDIS/RCS: Request to Send Disable/Release SPI Chip Select
— If USART does not operate in SPI Master Mode (MODE ... OxE):
0: No effect.

1: Drives the pin RTS to 1.

— If USART operates in SPI Master Mode (MODE = OxE):
RCS = 0: No effect.

RCS = 1: Releases the Slave Select Line NSS (RTS pin).

 RTSEN/FCS: Request to Send Enable/Force SPI Chip Select
— If USART does not operate in SPI Master Mode (MODE ... OxE):
0: No effect.

1: Drives the pin RTS to 0.

— If USART operates in SPI Master Mode (MODE = OxE):
FCS = 0: No effect.

FCS = 1: Forces the Slave Select Line NSS (RTS pin) to 0, even if USART is no transmitting, in order to address SPI slave
devices supporting the CSAAT Mode (Chip Select Active After Transfer).

* RETTO: Rearm Time-out

0: No effect

1: Restart Time-out

» RSTNACK: Reset Non Acknowledge

0: No effect

1: Resets NACK in CSR.

AImEl@ 340

32058K  AVR32-01/12



* RSTIT: Reset Iterations
0: No effect.

1: Resets ITERATION in CSR. No effect if the ISO7816 is not enabled.

« SENDA: Send Address

0: No effect.

1: In Multidrop Mode only, the next character written to the THR is sent with the address bit set.

e STTTO: Start Time-out

0: No effect.

1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in CSR.
» STPBRK: Stop Break

0: No effect.

1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.

« STTBRK: Start Break

0: No effect.

1: Starts transmission of a break after the characters present in THR and the Transmit Shift Register have been transmit-
ted. No effect if a break is already being transmitted.

» RSTSTA: Reset Status Bits

0: No effect.

1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in CSR.

» TXDIS: Transmitter Disable

0: No effect.

1: Disables the transmitter.

 TXEN: Transmitter Enable

0: No effect.

1: Enables the transmitter if TXDIS is 0.

 RXDIS: Receiver Disable

0: No effect.

1: Disables the receiver.

« RXEN: Receiver Enable

0: No effect.

1: Enables the receiver, if RXDIS is 0.

» RSTTX: Reset Transmitter
0: No effect.

AImEl@ 341

32058K  AVR32-01/12



1: Resets the transmitter.

» RSTRX: Reset Receiver
0: No effect.

1: Resets the receiver.

AImEl@ 342

32058K  AVR32-01/12



26.8.3 USART Mode Register

Name: MR

Access Type: Read-write

Offset: Ox4

Reset Value: -
31 30 29 28 27 26 24

| ONEBIT | MODSYNC | MAN | FILTER - | MAX_ITERATION |
23 22 21 20 19 18 16

| - | VAR_SYNC | DSNACK | INACK OVER | CLKO | MSBF/CPOL |
15 14 13 12 11 10 8

| CHMODE | NBSTOP PAR | SYNC/CPHA |
7 6 5 4 3 2 0

| CHRL | USCLKS MODE |

 ONEBIT: Start Frame Delimiter Selector
: Start Frame delimiter is COMMAND or DATA SYNC.

o

1: Start Frame delimiter is One Bit.

MODSYNC: Manchester Synchronization Mode
:The Manchester Start bit is a 0 to 1 transition

o

1: The Manchester Start bit is a 1 to 0 transition.

« MAN: Manchester Encoder/Decoder Enable
0: Manchester Encoder/Decoder are disabled.
1: Manchester Encoder/Decoder are enabled.

* FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.

1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).

* MAX_ITERATION

Defines the maximum number of iterations in mode ISO7816, protocol T= 0.

* VAR_SYNC: Variable Synchronization of Command/Data Sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on SYNC value.

1: The sync field is updated when a character is written into THR register.

» DSNACK: Disable Successive NACK

0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).

32058K  AVR32-01/12

ATMEL

343



1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors gener-
ate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.

* INACK: Inhibit Non Acknowledge

0: The NACK is generated.

1: The NACK is not generated.

* OVER: Oversampling Mode

0: 16x Oversampling.

1: 8x Oversampling.

e CLKO: Clock Output Select

0: The USART does not drive the CLK pin.
1: The USART drives the CLK pin if USCLKS does not select the external clock CLK.
 MODED9: 9-bit Character Length

0: CHRL defines character length.

1: 9-bit character length.

MSBF/CPOL: Bit Order or SPI Clock Polarity
— If USART does not operate in SPI Mode (MODE ... OxE and 0xF):

MSBF = 0: Least Significant Bit is sent/received first.
MSBF = 1: Most Significant Bit is sent/received first.

— If USART operates in SPI Mode (Slave or Master, MODE = OxE or OxF):
CPOL = 0: The inactive state value of SPCK is logic level zero.
CPOL = 1: The inactive state value of SPCK is logic level one.
CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with CPHA to produce the required

clock/data relationship between master and slave devices.

« CHMODE: Channel Mode

CHMODE Mode Description
0 0 Normal Mode
0 1 Automatic Echo. Receiver input is connected to the TXD pin.
1 0 Local Loopback. Transmitter output is connected to the Receiver Input..
1 1 Remote Loopback. RXD pin is internally connected to the TXD pin.

 NBSTOP: Number of Stop Bits

NBSTOP Asynchronous (SYNC = 0) Synchronous (SYNC = 1)

0 0 1 stop bit 1 stop bit

AImEl@ 344

32058K  AVR32-01/12



0 1 1.5 stop bits Reserved
1 0 2 stop bits 2 stop bits
1 1 Reserved Reserved
* PAR: Parity Type
PAR Parity Type
0 0 0 Even parity
0 0 1 Odd parity
0 1 0 Parity forced to O (Space)
0 1 1 Parity forced to 1 (Mark)
1 0 X No parity
1 1 X Multidrop mode

* SYNC/CPHA: Synchronous Mode Select or SPI Clock Phase

— If USART does not operate in SPI Mode (MODE is ... OxE and OxF):
SYNC = 0: USART operates in Asynchronous Mode.

SYNC = 1: USART operates in Synchronous Mode.
— If USART operates in SPI Mode (MODE = OxE or 0xF):

CPHA = 0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.
CPHA = 1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

CPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. CPHA is used

with CPOL to produce the required clock/data relationship between master and slave devices.

* CHRL: Character Length.

CHRL Character Length
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits

» USCLKS: Clock Selection

USCLKS Selected Clock
0 0 CLK_USART
0 1 CLK_USART/DIV (DIV = xx)
1 0 Reserved

CLK

32058K  AVR32-01/12

ATMEL

345



+ MODE

MODE

Mode of the USART

Normal

RS485

o |o | o

Hardware Handshaking

IS07816 Protocol: T=0

oO|lo|o| o | o

IS07816 Protocol: T = 1

IrDA

o | o |o | o | o

SPI Master

SPI Slave

Others

Reserved

32058K  AVR32-01/12

ATMEL

346



26.8.4 USART Interrupt Enable Register

Name: IER
Access Type: Write-only
Offset: 0x8

Reset Value: -
31 30 29

28 27

26

25

24

MANEA

23 22 21

20 19

18

17

MANE | CTSIC

15 14 13

12 11

10

9

| | [ WAk ]

RXBUFF | TXBUFE

| ITER/UNRE

TXEMPTY

TIMEOUT |

7 6 5

4 3

2

1

0

PARE FRAME OVRE
I

ENDTX | ENDRX

| RXBRK

TXRDY

RXRDY

* MANEA: Manchester Error Interrupt Enable

* MANE: Manchester Error Interrupt Enable

» CTSIC: Clear to Send Input Change Interrupt Enable

* NACK: Non Acknowledge Interrupt Enable
* RXBUFF: Buffer Full Interrupt Enable

* TXBUFE: Buffer Empty Interrupt Enable

* ITER/UNRE: Iteration or SPI Underrun Error Interrupt Enable

o TXEMPTY: TXEMPTY Interrupt Enable

» TIMEOUT: Time-out Interrupt Enable

* PARE: Parity Error Interrupt Enable

* FRAME: Framing Error Interrupt Enable
» OVRE: Overrun Error Interrupt Enable

 ENDTX: End of Transmit Interrupt Enable

 ENDRX: End of Receive Transfer Interrupt Enable

» RXBRK: Receiver Break Interrupt Enable
* TXRDY: TXRDY Interrupt Enable

* RXRDY: RXRDY Interrupt Enable

32058K  AVR32-01/12

ATMEL

347



26.8.5 USART Interrupt Disable Register

Name: IDR

AImEl@ 348

32058K  AVR32-01/12



Access Type: Write-only
Offset: 0xC

Reset Value: -

31 30 29 28 27 26 25 24
- [ - ] I I I I [ MANEA |
23 22 21 20 19 18 17 16
| - | - | - | MANE | CTSIC | - | - | - |
15 14 13 12 11 10 9 8
| | | NACK | RXBUFF | TXBUFE | ITER/UNRE | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0
| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

 MANEA: Manchester Error Interrupt Disable

* MANE: Manchester Error Interrupt Disable

» CTSIC: Clear to Send Input Change Interrupt Disable
* NACK: Non Acknowledge Interrupt Disable

» RXBUFF: Buffer Full Interrupt Disable

* TXBUFE: Buffer Empty Interrupt Disable

* ITER/UNRE: Iteration or SPI Underrun Error Interrupt Enable
 TXEMPTY: TXEMPTY Interrupt Disable

* TIMEOUT: Time-out Interrupt Disable

» PARE: Parity Error Interrupt Disable

* FRAME: Framing Error Interrupt Disable

e OVRE: Overrun Error Interrupt Disable

« ENDTX: End of Transmit Interrupt Disable

 ENDRX: End of Receive Transfer Interrupt Disable

« RXBRK: Receiver Break Interrupt Disable

e TXRDY: TXRDY Interrupt Disable

 RXRDY: RXRDY Interrupt Disable

AImEl@ 349

32058K  AVR32-01/12



26.8.6 USART Interrupt Mask Register

Name: IMR

Access Type: Read-only

Offset: 0x10

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- [ - | I I I I [ MANEA |
23 22 21 20 19 18 17 16

| - | - | - | MANE | CTSIC | - | - | - |
15 14 13 12 11 10 9 8

| | | NACK | RXBUFF | TXBUFE | ITER/UNRE | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0

| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

* MANEA: Manchester Error Interrupt Mask

* MANE: Manchester Error Interrupt Mask

» CTSIC: Clear to Send Input Change Interrupt Mask

* NACK: Non Acknowledge Interrupt Mask

* RXBUFF: Buffer Full Interrupt Mask

* TXBUFE: Buffer Empty Interrupt Mask

* ITER/UNRE: Iteration or SPI Underrun Error Interrupt Enable

o TXEMPTY: TXEMPTY Interrupt Mask

e TIMEOUT: Time-out Interrupt Mask

* PARE: Parity Error Interrupt Mask

* FRAME: Framing Error Interrupt Mask

» OVRE: Overrun Error Interrupt Mask

» ENDTX: End of Transmit Interrupt Mask

» ENDRX: End of Receive Transfer Interrupt Mask

 RXBRK: Receiver Break Interrupt Mask

» TXRDY: TXRDY Interrupt Mask

* RXRDY: RXRDY Interrupt Mask

ATMEL 350
. ________________[G]

32058K  AVR32-01/12



26.8.7 USART Channel Status Register

Name: CSR

AImEl@ 351

32058K  AVR32-01/12



Access Type: Read-only
Offset: 0x14

Reset Value: -

31 30 29 28 27 26 25 24
- [ - ] I I I I | MANERR |
23 22 21 20 19 18 17 16
[ °cs | - | - [ - [ c1sc ] - - 1 - ]
15 14 13 12 11 10 9 8
| | | NACK | RXBUFF | TXBUFE | ITER/UNRE | TXEMPTY | TIMEOUT |
7 6 5 4 3 2 1 0
| PARE | FRAME | OVRE | ENDTX | ENDRX | RXBRK | TXRDY | RXRDY |

* MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.

1: At least one Manchester error has been detected since the last RSTSTA.

* CTS: Image of CTS Input

0:CTSisatO.

1: CTSis at 1.

e CTSIC: Clear to Send Input Change Flag

0: No input change has been detected on the CTS pin since the last read of CSR.

1: At least one input change has been detected on the CTS pin since the last read of CSR.

* NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.

1: At least one Non Acknowledge has been detected since the last RSTNACK.
* RXBUFF: Reception Buffer Full

0: The signal Buffer Full from the Receive PDC channel is inactive.

1: The signal Buffer Full from the Receive PDC channel is active.

» TXBUFE: Transmission Buffer Empty

0: The signal Buffer Empty from the Transmit PDC channel is inactive.

1: The signal Buffer Empty from the Transmit PDC channel is active.

ITER/UNRE: Max number of Repetitions Reached or SPI Underrun Error
— If USART does not operate in SPI Slave Mode (MODE ... OxF):
ITER = 0: Maximum number of repetitions has not been reached since the last RSTSTA.

ITER = 1: Maximum number of repetitions has been reached since the last RSTSTA.

ATMEL

32058K  AVR32-01/12

352



— If USART operates in SPI Slave Mode (MODE = 0xF):

UNRE = 0: No SPI underrun error has occurred since the last RSTSTA.

UNRE = 1: At least one SPI underrun error has occurred since the last RSTSTA.

0: There are characters in either THR or the Transmit Shift Register, or the transmitter is disabled.

TXEMPTY == 1: Means that the Transmit Shift Register is empty and that there is no data in THR.

0:
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.

1:

TXEMPTY: Transmitter Empty

TIMEOUT: Receiver Time-out

: There has not been a time-out since the last Start Time-out command (STTTO in CR) or the Time-out Register is 0.

: There has been a time-out since the last Start Time-out command (STTTO in CR).

PARE: Parity Error

: No parity error has been detected since the last RSTSTA.

: At least one parity error has been detected since the last RSTSTA.

FRAME: Framing Error

: No stop bit has been detected low since the last RSTSTA.
: At least one stop bit has been detected low since the last RSTSTA.

OVRE: Overrun Error

: No overrun error has occurred since the last RSTSTA.

: At least one overrun error has occurred since the last RSTSTA.

ENDTX: End of Transmitter Transfer

: The End of Transfer signal from the Transmit PDC channel is inactive.

: The End of Transfer signal from the Transmit PDC channel is active.

ENDRX: End of Receiver Transfer

: The End of Transfer signal from the Receive PDC channel is inactive.

: The End of Transfer signal from the Receive PDC channel is active.

RXBRK: Break Received/End of Break

: No Break received or End of Break detected since the last RSTSTA.
: Break Received or End of Break detected since the last RSTSTA.

TXRDY: Transmitter Ready

A character is in the THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been

There is no character in the THR.

RXRDY: Receiver Ready

0: No complete character has been received since the last read of RHR or the receiver is disabled. If characters were being

received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.

32058K  AVR32-01/12

ATMEL

353



1: At least one complete character has been received and RHR has not yet been read.

AImEl@ 354

32058K  AVR32-01/12



26.8.8 USART Receive Holding Register

Name: RHR

Access Type: Read-only

Offset: 0x18

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- T - T - T - T - - - —
23 22 21 20 19 18 17 16

- T - T - T - T - - - — 1
15 14 13 12 11 10 9 8

| RXSYNH | - | - | - | - - - RXCHR |
7 6 5 4 3 2 1 0

| RXCHR

RXSYNH: Received Sync
0: Last Character received is a Data.

1: Last Character received is a Command.

RXCHR: Received Character
Last character received if RXRDY is set.

32058K  AVR32-01/12

ATMEL

355



26.8.9 USART Transmit Holding Register

Name: THR
Access Type: Write-only
Offset: 0x1C
Reset Value: -
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| TXSYNH | - | - | - | - | - | - TXCHR |
7 6 5 4 3 2 1 0
| TXCHR |
* TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.
1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.
» TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.
AIMEL 356
Y )

32058K  AVR32-01/12



26.8.10 USART Baud Rate Generator Register
Name: BRGR
Access Type: Read-write
Offset: 0x20
Reset Value: 0x00000000

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16
I N - — T - ] PP |

15 14 13 12 11 10 9 8
I cb |

7 6 5 4 3 2 1 0
I cb |
* FP: Fractional Part
0: Fractional divider is disabled.
1 - 7: Baudrate resolution, defined by FP x 1/8.
» CD: Clock Divider

MODE # 1SO7816
SYNC =1
or
MODE = SPI
SYNC =0 (Master or Slave)
CD OVER =0 OVER =1 MODE = 1S07816
0 Baud Rate Clock Disabled
1 to 65535 Baud Rate = Baud Rate = Baud Rate = Baud Rate = Selected
Selected Clock/16/CD Selected Clock/8/CD Selected Clock /CD Clock/CD/FI_DI_RATIO

32058K  AVR32-01/12

ATMEL

357



26.8.11 USART Receiver Time-out Register

Name: RTOR
Access Type: Read-write
Offset: 0x24
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
- 1 -1 - T -"T -—"T - - -~
23 22 21 20 19 18 17 16
- 1 - T - T - T =T = - — ]
15 14 13 12 11 10 9 8
I T |
7 6 5 4 3 2 1 0
|

| TO

e TO: Time-out Value
0: The Receiver Time-out is disabled.

1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.

ATMEL

32058K  AVR32-01/12

358



26.8.12 USART Transmitter Timeguard Register

Name: TTGR

Access Type: Read-write

Offset: 0x28

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - - |
7 6 5 4 3 2 1 0

| TG

* TG: Timeguard Value
0: The Transmitter Timeguard is disabled.

1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.

ATMEL

32058K  AVR32-01/12

359



26.8.13 USART FI DI RATIO Register

Name: FIDI
Access Type: Read-write
Offset: 0x40
Reset Value: 0x00000174
31 30 29 28 27 26 25 24
- T - T - — T - — T - —
23 22 21 20 19 18 17 16
- T - T - -~ T - — T - — 1
15 14 13 12 11 10 9 8
| - [ - | - - [ - FI_DI_RATIO |
7 6 5 4 3 2 1 0
FI_DI_RATIO |

» FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.

1-2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on CLK divided by FI_DI_RATIO.

32058K  AVR32-01/12

ATMEL

360



26.8.14 USART Number of Errors Register

Name: NER
Access Type: Read-only
Offset: 0x44
Reset Value: -

31 30 29 28 27 26 25 24
- T - T - — T - - - —
23 22 21 20 19 18 17 16
- T - T - -~ T - - - — 1
15 14 13 12 11 10 9 8
- T - T - — T - - - — ]
7 6 5 4 3 2 1 0

NB_ERRORS |

« NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.

32058K  AVR32-01/12

ATMEL

361



26.8.15 USART IrDA FILTER Register
Name: IFR
Access Type: Read-write
Offset: 0x4C
Reset Value: 0x00000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10
7 6 5 4 3 2 1 0
IRDA_FILTER |

» IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.

32058K  AVR32-01/12

ATMEL

362



26.8.16 USART Manchester Configuration Register

Name: MAN

Access Type: Read-write

Offset: 0x50

Reset Value: 0x30011004
31 30 29 28 27 26 25 24

| - | DRIFT | 1 |RX_MPOL| - - RX_PP |
23 22 21 20 19 18 17 16

I - I - I - I - I RX_PL |
15 14 13 12 11 10 9 8

| - [ - | - [ TXMPOL | - - TX_PP |
7 6 5 4 3 2 1 0

I - I - I - I - I TX_PL |

* DRIFT: Drift compensation
0: The USART can not recover from an important clock drift

1: The USART can recover from clock drift. The 16X clock mode must be enabled.

« RX_MPOL: Receiver Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

* RX_PP: Receiver Preamble Pattern detected

RX_PP Preamble Pattern default polarity assumed (RX_MPOL field not set)
0 0 ALL_ONE
0 1 ALL_ZERO
1 0 ZERO_ONE
1 1 ONE_ZERO

RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled

—_

- 15: The detected preamble length is RX_PL x Bit Period

TX_MPOL: Transmitter Manchester Polarity
: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.

- O

: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.

AImEl@ 363

32058K  AVR32-01/12



« TX_PP: Transmitter Preamble Pattern

TX_PP Preamble Pattern default polarity assumed (TX_MPOL field not set)
0 ALL_ONE
0 ALL_ZERO
1 ZERO_ONE
1 ONE_ZERO

e TX_PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled

1-15: The Preamble Length is TX_PL x Bit Period

32058K  AVR32-01/12

ATMEL

364



26.8.17 USART Version Register

Name: VERSION

Access Type: Read-only

Offset: OxFC

Reset Value: 0x00000000
31 30 29 28 27 26 25 24

- T - T - — T - - - —
23 22 21 20 19 18 17 16

| - | - | - - | 